

SPECIFICATION

PA.22A Part No.

Dielectric PIFA Antenna Product Name

Description Tri-band - 880~960 MHz, 1710~1990 MHz, 0dB Gain

Size: 29.8mm*6mm*5mm

RoHS Compliant

1.Scope

This specification is for a Tri-band GSM miniature PIFA (Dielectric Planar Inverted-F Type Antenna) (DPA™) Antenna for internal SMT mounting.

Note: The antenna also shows a response at 850MHz which means the antenna can also be defined on quad-band, depending on the target specification for the device itself.

2. Electrical Specifications

The antenna has the electrical characteristics given in Table 1 under the Taoglas standard installation conditions as shown in the Evaluation Board (Figure

No.	Parameter	Specification
1	Frequency	880~960 MHz , 1710~1990 MHz
2	Dimensions	29.8*6.0*5.0 mm
3	Impedance	50 Ω
4	VSWR	2.5 max (depends on environment)
5	Polarization	Linear
6	Operating Temperature	-40~85°C
		Ag (Environmentally Friendly Lead-
7	Termination	Free)

*Data is measured on Taoglas Evaluation Board (reference ground plane) pictured below

2.1 S11 Response Curve

Radiation patterns also available (measured in free space and on evaluation board)

2.2 Gain and Efficiency

GSM900

Frequency		Peak Gain	Efficiency
	(MHz)	(dBi)	(%)
	880.2	-3.65	21.09
TX	890.2	-2.73	26.25
12	902.4	-2.28	31.23
	914.8	-2.04	35.24
RX	925.2	-1.96	37.02
	935.2	-2.54	33.33
	947.4	-2.96	31.17
	959.8	-3.16	29.47

GSM1800

F	requency (MHz)	Peak Gain (dBi)	Efficiency (%)
тх	1710.2	2.28	60.63
	1747.6	2.35	61.53
	1784.8	2.58	60.77
RX	1805.2	2.32	56.67
	1842.6	2.43	56.31
	1879.8	2.59	58.69

GSM1900

Frequency		Peak Gain	Efficiency
	(MHz)	(dBi)	(%)
тх	1850.2	2.48	56.95
	1880.0	2.60	58.75
	1909.8	2.12	52.79
RX	1930.2	2.01	52.02
	1960.0	1.31	47.26
	1989.8	0.30	38.62

GSM900 GSM1800

F	requency (GHz)	Plane	Average Gain (dBi)
	880.2	XY plane	-7.133
		YZ plane	-9.766
		XZ plane	-6.101
		XY plane	-5.968
	890.2	YZ plane	-8.845
TX		XZ plane	-5.126
'^		XY plane	-4.898
	902.4	YZ plane	-8.892
		XZ plane	-4.350
	914.8	XY plane	-4.077
		YZ plane	-7.477
		XZ plane	-3.865
	925.2	XY plane	-3.599
		YZ plane	-7.202
		XZ plane	-3.732
	935.2	XY plane	-3.802
		YZ plane	-7.648
RX		XZ plane	-4.290
	947.4	XY plane	-3.788
		YZ plane	-7.843
		XZ plane	-4.579
	959.8	XY plane	-3.801
		YZ plane	-7.913
		XZ plane	-5.187

Fi	requency (GHz)	Plane	Average Gain (dBi)
	1710.2	XY plane	-2.648
		YZ plane	-4.661
		XZ plane	-1.687
		XY plane	-2.529
TX	1747.6	YZ plane	-4.696
		XZ plane	-1.207
	1784.8	XY plane	-2.685
		YZ plane	-4.687
		XZ plane	-0.888
		XY plane	-3.193
	1805.2	YZ plane	-4.911
		XZ plane	-1.105
	1842.6	XY plane	-3.468
RX		YZ plane	-4.753
		XZ plane	-1.145
	1879.8	XY plane	-3.745
		YZ plane	-4.131
		XZ plane	-1.430

GSM1900

Fi	requency (GHz)	Plane	Average Gain (dBi)
TX		XY plane	-3.511
	1850.2	YZ plane	-4.649
		XZ plane	-1.147
		XY plane	-3.746
	1880.0	YZ plane	-4.124
		XZ plane	-1.435
		XY plane	-4.683
	1909.8	YZ plane	-4.228
		XZ plane	-2.525
	1930.2	XY plane	-5.539
		YZ plane	-4.270
		XZ plane	-3.257
		XY plane	-6.444
RX	1960.0	YZ plane	-4.441
		XZ plane	-4.126
		XY plane	-8.068
	1989.8	YZ plane	-5.359
		XZ plane	-5.477

GSM900

Frequency:880.2 MHz

Far-field Power Entribation on X-Z Plana (E-Plana of L3 Pol Same) Online-3-65 dB; Total Radiating Efficiency: 21.05% (\$088020 GB);

Fre-field Power Distribution on Y-Z-Plane(H-Plane of L3 Pol Senne) Gain-3-65 dB; Total Radisting Efficiency: 21.09%@080020GB;

Frequency:890.2 MHz
For-field Power Excitation on No.2 Henryll-Plane of L3 Pel Strand)
Cairr-2.75 dBi; Total Radioting Hilliciancy: 262294@089020.0Bit

Frequency:902.4MHz

Far-field Power Distribution on X-Y Plane n=-228 dN; Total Radwing Efficiency: N 2294@090040 GHz

Frequency:914.8MHz

Far-field Power Distribution on N.Z. Flanc (E-Flanc of L.3 Pol Sense) Ontre-201 dN; Total Radiating Efficiency: 252494 (\$091 480 GHz)

Frequency:925.2MHz

Frequency:935.2MHz

Frequency:947.4MHz

Far-field Fower Distribution on N.Z. Hans (E-Flanc of L3 Pol Sense) Ontro-296 dB; Total Radiating Efficiency: N.17% (\$0947-00 GB)

Far-field Power Distribution on Y-Z Plane(H-Plane of L3 Pol Sense) Gain--296 dB; Total Radisting Efficiency: 31.17% (8094740 GBz.

Far-field Power Distribution on X-Y Plane in-296dB; Total Radiating Efficiency: 31.176(8)991740GBs

Frequency:959.8MHz

Far-field Power Distribution on N-Z Plane (E-Flane of L3 Pol Sense) Outre-3.16 dBi; Total Radiating Efficiency: 2947% (§2000) GBb

Fae-field Power Distribution on Y-Z-Plane(H-Plane of L3 Pol Sense) Gain=-316 dB; Total Radiating Efficiency: 2947%@095900GB;

Far-field Power Distribution on X-Y Plane

GSM1800

Frequency:1710.2 MHz

Far-field Fower Distribution on N-Z Flanc (E-Flanc of L3 Pol Sense) Gain=228 dB; Total Radiating Efficiency: 60-694 (B 71020 GHz

Far-field Power Distribution on Y-Z Plane (H-Plane of L3 Pol Sense) Gain=228 dB; Total Radiating Efficiency: 6063% (§ 71020 GB):

Far-field Power Distribution on X-Y Plane in-228dW; Total Radiating Efficiency: 60.694(8).71020 GHz

Frequency:1747.6 MHz

Far-field Power Distribution on Y-Z Plane(H-Plane of L3 Pol Sense) Gein=235-db; Total Radiating Efficiency: 61-53%@3-74760 Gb;

Far-field Power Distribution on X-Y Plane i==235 dB: Total Radiating Efficiency: 61-53% (8):74760 GB:

Frequency:1784.8 MHz

Frequency:1805.2 MHz

Frequency:1842.6 MHz

Frequency:1879.8 MHz

GSM1900

Frequency:1850.2 MHz

Frequency :1880.0 MHz
For-field Power Distribution on No.2 Heardle-Plane of L.3 Pol Strands
Gain-200-dis; Treats Randoning Hilliciancy: \$8.75% (SJ \$8000 GR)

Frequency:1909.8 MHz

Frequency: 1930.2 MHz

Far-field Power Distribution on N-Z Flanc (E-Flanc of L3 Pol Strac)
Gain=180-68; Total Radiating Efficiency: 50.11% (§5.9000 GHz)

Far-field Power Distribution on Y-Z Plane(H-Plane of L3 Pol Sense) Gain=130:dB; Total Radiating Bifficiency: 5011% (§5.9020 GR);

Frequency: 1960.0 MHz

Frequency: 1989.8 MHz

Re-field Power Distribution on N-Z Hame(H-Hame of L3 Fel Same) Grin=030 dB; Total Radiating Efficiency: 38 62% (8) 98980 GB;

Far-field Power Distribution on X-Y Plane Gain-000dBi; Total Radiating Efficiency: 266294(8):98880 GBs

3. Mechanical Dimensions

3.1 PA.22 Antenna

3.2Evaluation board dimensions

- 1. Unique dimensioning according to your PCB inductor and capacitor values according to you specific device
- 2.Copper area
- 3.Soldered area
- 4.Clearance area

3.3 Recommended layout (as per Taoglas evalution board)

View from underneath board - note solder pads either side - laid out on non metal area Layout dimensions - Allow 6mm clearance all around if possible (minimum 4mm)

3.4 Recommended Transmission Line and Matching Network

The matching network has to be individually designed using one, two or three components.

Note: The PA.22 can be made "quad band" with appropriate matching circuit Guidelines for routing RF when designing a PCB;

1) Good

2) Bad

4. Packaging

450 pc PA.22.A 1 reel in small inner box Dimensions - 350*350*70 Weight - 3.6Kg

4 boxes / 1800 pcs in one carton Carton Dimensions - 370*360*275mm Weight -14.4Kg

Pallet Dimensions 1110*720*1380mm 24 Cartons per Pallet 6 Cartons per layer 4 Layers

5. Recommended Reflow Temperature Profile

- (1) Time shown in the above figures is measured from the point when chip surface reaches temperature.
- (2) Temperature difference in high temperature part should be within 110°C.
- (3) After soldering, do not force cool, allow the parts to cool gradually.
- *General attention to soldering:
- High soldering temperatures and long soldering times can cause leaching of the termination, decrease in adherence strength, and the change of characteristic may occur.
- for soldering, please refer to the soldering curves above. However, please keep exposure to temperatures exceeding 200°C to under 50 seconds.
- please use a mild flux (containing less than 0.2wt% Cl). Also, if the flux is water soluble, be sure to wash thoroughly to remove any residue from the underside of components that could affect resistance.

Cleaning:

When using ultrasonic cleaning, the board may resonate if the output power is too high. Since this vibration can cause cracking or a decrease in the adherence of the termination, we recommend that you use the conditions below.

Frequency: 40 kHz max. - Output power: 20W/Iiter -Cleaning time: 5minutes max.