IF Digitally Controlled Variable-Gain Amplifier

\qquad
The MAX2027 high-performance, digitally controlled variable-gain amplifier is designed for use from 50 MHz to 400 MHz .
The device integrates a digitally controlled attenuator and a high-linearity IF amplifier in one package. Targeted for IF signal chains to adjust gain either dynamically or as a one-time channel gain setting, the MAX2027 is ideal for applications requiring high performance. The attenuator provides 23 dB of attenuation range with $\pm 0.05 \mathrm{~dB}$ state-to-state accuracy.
The MAX2027 is available in a thermally enhanced 20pin TSSOP-EP package and operates over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Features

- 50MHz to 400MHz Frequency Range
- Variable Gain: -8 dB to +15 dB
- Output IP3: 35dBm (at All Gain Settings)
- Noise Figure: 4.7dB at Maximum Gain
- Digitally Controlled Gain with 1dB Resolution and $\pm 0.05 \mathrm{~dB}$ State-to-State Accuracy

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX2027EUP-T	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TSSOP-EP ${ }^{*}$
${ }^{\star} E P=$ exposed pad.		

Pin Configuration/ Functional Diagram

Cellular Base Stations
Receiver Gain Control
Transmitter Gain Control
Broadband Systems
Automatic Test Equipment
Terrestrial Links

IF Digitally Controlled Variable-Gain Amplifier

ABSOLUTE MAXIMUM RATINGS

All Pins Input Voltage (except AMPIN, IBIAS, and ISET)
to GND
-0.3 V to +5.5 V

Input Voltage Levels (B0-B4).....................-0.3V to (VCC +0.5 V)
Input Voltage Levels (AMPIN and IBIAS).. Input Voltage Levels (ISET) -0.3 V to +1.5 V

RF Input Signal
-0.3 V to +1.0 V
RF Output Signal. 20dBm

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(Typical application circuit, $\mathrm{V}_{\mathrm{CC}}=+4.75 \mathrm{~V}$ to +5.25 V , GND $=0 \mathrm{~V}$. No RF signals applied, and RF input and output ports are terminated with 50Ω. $\mathrm{R}_{1}=825 \Omega, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1,2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SUPPLY						
Supply Voltage	Vcc		4.75	5.00	5.25	V
Supply Current	IcC			60	75	mA
ISET Current	ISET			0.9		mA
CONTROL INPUTS/OUTPUTS						
Control Bits		Parallel		5		Bits
Input Logic High		(Note 3)	2			V
Input Logic Low					0.6	V
Input Leakage Current			-1.2		+1.2	$\mu \mathrm{A}$

IF Digitally Controlled Variable-Gain Amplifier

AC ELECTRICAL CHARACTERISTICS

(Typical application circuit without matching, $\mathrm{V}_{\mathrm{Cc}}=+4.75 \mathrm{~V}$ to +5.25 V , $\mathrm{GND}=0 \mathrm{~V}$, max gain ($\mathrm{B} 0=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0$), $\mathrm{R}_{1}=$ 825Ω, Pout $=5 \mathrm{dBm}, \mathrm{f}_{\mathrm{IN}}=50 \mathrm{MHz}, 50 \Omega \mathrm{RF}$ system impedance. Typical values are at $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Notes 1, 2)

Note 1: Guaranteed by design and characterization.
Note 2: All limits reflect losses of external components. Output measurements are taken at RF OUT using the typical application circuit.

IF Digitally Controlled Variable-Gain Amplifier

Typical Operating Characteristics
(Typical application circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, max gain $\left(\mathrm{BO}=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0\right.$), POUT $=5 \mathrm{dBm}, \mathrm{R}_{1}=825 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

IF Digitally Controlled Variable-Gain Amplifier

Typical Operating Characteristics (continued)

(Typical application circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, max gain ($\mathrm{B} 0=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0$), Pout $=5 \mathrm{dBm}, \mathrm{R}_{1}=825 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

IF Digitally Controlled Variable-Gain Amplifier

Typical Operating Characteristics (continued)
(Typical application circuit, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, max gain $\left(\mathrm{BO}=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0\right.$), POUT $=5 \mathrm{dBm}, \mathrm{R}_{1}=825 \Omega, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

IF Digitally Controlled Variable-Gain Amplifier

Pin Description

PIN	NAME	FUNCTION
$1,2,11$	VCC	Power Supply. Bypass to GND with capacitors as close to the pin as possible as shown in the typical application circuit (Figure 1).
3	RF_IN	Signal Input. See the typical application circuit for recommended component values. Requires an external DC-blocking capacitor.
$4,5,16,17$, 19,20, EP	GND	Ground. Use low-inductance layout techniques on PC board. Solder the exposed pad evenly to the board ground plane.
$6-10$	B4-B0	Gain-Control Bits. See Table 3 for gain setting.
12	RF_OUT	Signal Output. Requires an external pullup choke inductor (52mA typical current) to VCC along with a DC-blocking capacitor (Figure 1).
13	ISET	Connect an 825 Ω resistor from ISET to GND.
14	IBIAS	Amplifier Bias. Connect to AMPIN (pin 15) through a choke inductor (0.3mA typ).
15	AMPIN	Amplifier Input. Requires a DC-coupling capacitor to allow biasing.
18	ATTNOUT	Attenuator Output. Requires an external DC-blocking capacitor.

Detailed Description

The MAX2027 is a high-performance, digitally controlled variable-gain amplifier for use in applications from 50 MHz to 400 MHz .
The MAX2027 incorporates a digital attenuator with a 23 dB selectable attenuation range followed by a fixedgain, high-linearity amplifier. The attenuator is digitally controlled through five logic lines: B0-B4. This on-chip attenuator provides up to 23 dB of attenuation with $\pm 0.05 \mathrm{~dB}$ state-to-state accuracy. The fixed-gain amplifier utilizes negative feedback to achieve high stability, gain, linearity, and wide bandwidth.

Applications Information

Input and Output Matching

The MAX2027 incorporates on-chip input and output matching for operation below 250 MHz . Use a DC-blocking capacitor value of 1000 pF for pins 3,12 , and 18 (see Figure 1). For operation above 250 MHz , external matching improves performance. Table 1 and Table 2 provide recommended components for device operation.

Digitally Controlled Attenuator

The digital attenuator is controlled through five logic lines: B0, B1, B2, B3, and B4. Table 3 lists the attenuation settings. The input and output of this attenuator require external DC-blocking capacitors. This attenuator insertion loss is 2 dB when the attenuator is set to $\mathrm{OdB}(\mathrm{BO}=\mathrm{B} 1=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4=0)$.

Table 1. Suggested Components of Typical Application Circuit

COMPONENT	VALUE	SIZE
C1, C3, C4	1000 pF	0603
C2, C5	100 pF	0603
C6, C7	$0.1 \mu \mathrm{~F}$	0603
C10	$0.047 \mu \mathrm{~F}$	0603
R1	$825 \Omega \pm 1 \%$	0603
R2-R6	$47 \mathrm{k} \Omega$	0603
L1	330 nH	0805
L2	680 nH	1008

Table 2. Suggested Matching

 Components| FREQUENCY | COMPONENT | VALUE | SIZE |
| :---: | :---: | :---: | :---: |
| 300 MHz | $\mathrm{L} 3, \mathrm{~L} 4$ | 11 nH | 0603 |
| | $\mathrm{C} 8, \mathrm{C} 9$ | 6.8 pF | 0603 |
| 400 MHz | $\mathrm{L} 3, \mathrm{~L} 4$ | 8.7 nH | 0603 |
| | $\mathrm{C} 8, \mathrm{C} 9$ | 5 pF | 0603 |

IF Digitally Controlled Variable-Gain Amplifier

Figure 1. Typical Application Circuit

Fixed-Gain Amplifier
The MAX2027 integrates a fixed-gain amplifier in a negative feedback topology. This fixed-gain amplifier is optimized for a frequency range of operation from 50 MHz to 400 MHz with a high-output third-order intercept point (OIP3). The bias current is chosen to optimize the IP_{3} of the amplifier. When R_{1} is 825Ω, the current consumption is 60 mA while exhibiting a typical 35 dBm output IP3.

Choke Inductor

The fixed-gain amplifier output port requires an external pullup choke inductor to Vcc. At the input, connect a bias inductor of 330 nH from AMPIN (pin 15) to IBIAS (pin 14). At the output, connect a 680 nH choke inductor from RF_OUT (pin 12) to Vcc (pin 11) to provide bias current to the amplifier.

Layout Considerations
A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and induc-
tance. For the best performance, route the ground pin traces directly to the exposed pad under the package. The PC board exposed pad must be connected to the ground plane of the PC board. It is suggested that multiple vias be used to connect this pad to the lower level ground planes. This method provides a good RF/thermal conduction path for the device. Solder the exposed pad on the bottom of the device package to the PC board.
The MAX2027 Evaluation Kit can be used as a reference for board layout. Gerber files are available upon request at www.maxim-ic.com.

Power-Supply Bypassing
Proper voltage-supply bypassing is essential for highfrequency circuit stability. Bypass each VCC pin with a $0.1 \mu \mathrm{~F}$ and 100 pF capacitor. Connect the 100 pF capacitor as close to V_{CC} pins as possible.

Exposed Pad RF/Thermal Considerations

The exposed paddle (EP) of the MAX2027's 20-pin TSSOP-EP package provides a low thermal-resistance path to the die. It is important that the PC board on

IF Digitally Controlled Variable-Gain Amplifier

Table 3. Attenuation Setting vs. GainControl Bits

ATTENUATION (dB)	$\begin{gathered} \mathrm{B4} \\ (16 \mathrm{~dB}) \end{gathered}$	$\begin{gathered} \mathrm{B3}^{*} \\ (8 \mathrm{~dB}) \end{gathered}$	$\begin{gathered} \mathrm{B2} \\ (4 \mathrm{~dB}) \end{gathered}$	$\begin{gathered} \mathrm{B} 1 \\ (2 \mathrm{~dB}) \end{gathered}$	$\begin{gathered} \mathrm{BO} \\ (1 \mathrm{~dB}) \end{gathered}$
0	0	0	0	0	0
1	0	0	0	0	1
2	0	0	0	1	0
3	0	0	0	1	1
4	0	0	1	0	0
5	0	0	1	0	1
6	0	0	1	1	0
7	0	0	1	1	1
8	0	1	0	0	0
9	0	1	0	0	1
10	0	1	0	1	0
11	0	1	0	1	1
12	0	1	1	0	0
13	0	1	1	0	1
14	0	1	1	1	0
15	0	1	1	1	1
16	1	X	0	0	0
17	1	X	0	0	1
18	1	X	0	1	0
19	1	X	0	1	1
20	1	X	1	0	0
21	1	X	1	0	1
22	1	X	1	1	0
23	1	X	1	1	1

*Enabling B4 disables B3, and the minimum attenuation is 16dB
which the MAX2027 is mounted be designed to conduct heat from the EP. In addition, provide the EP with a low-inductance path to electrical ground. The EP must be soldered to a ground plane on the PC board, either directly or through an array of plated via holes.

IF Digitally Controlled Variable-Gain Amplifier

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time

