

# **EVAL-ADG5243FEBZ User Guide** UG-894

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

## Evaluation Board for the ADG5243F, Overvoltage Protected Triple SPDT Switch

#### **FEATURES**

Supply voltages Dual supply: ±5 V to ±22 V Single supply: 8 V to 44 V Protected against overvoltage on source pins Signal voltages up to -55 V and +55 V LED for visual overvoltage indication Parallel interface compatible with 3 V logic On-board LDO regulator for digital supply and control, if required

### **EVALUATION KIT CONTENTS**

**EVAL-ADG5243FEBZ** evaluation board

#### **DOCUMENTS NEEDED**

ADG5243F data sheet **EVAL-ADG5243FEBZ** user guide

### **EQUIPMENT NEEDED**

DC voltage source ±22 V for dual supply 44 V for single supply Optional digital voltage source: 3 V to 5 V

**Analog signal source** 

Method to measure voltage, such as a digital multimeter (DMM)

#### **GENERAL DESCRIPTION**

The EVAL-ADG5243FEBZ is the evaluation board for the ADG5243F, which features three independently controlled single-pole/double-throw (SPDT) switches. The ADG5243F has overvoltage detection and protection circuitry on the source pins and is protected against signals up to -55 V and +55 V in both the powered and unpowered states.

Figure 1 shows the EVAL-ADG5243FEBZ in a typical evaluation setup. The ADG5243F is soldered to the center of the evaluation board, and screw terminals are provided to connect to each of the source and drain pins. Three screw terminals power the device, and a fourth terminal provides a user defined digital voltage, if required. Alternatively, a low dropout (LDO) regulator is provided for 5 V digital voltage control and to supply the LED, which is mounted to provide visual indication of the fault status of the switch.

Full specifications on the ADG5243F are available in the product data sheet, which should be consulted in conjunction with this user guide when using the evaluation board.

#### **EVALUATION BOARD CONNECTION DIAGRAM**

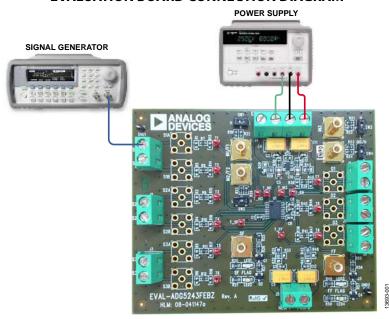



Figure 1. EVAL-ADG5243FEBZ, Power Supply, and Signal Generator

# UG-894

# **EVAL-ADG5243FEBZ** User Guide

# **TABLE OF CONTENTS**

| Features                            | J |
|-------------------------------------|---|
| Evaluation Kit Contents             | 1 |
| Documents Needed                    |   |
| Equipment Needed                    | 1 |
| General Description                 | 1 |
| Evaluation Board Connection Diagram | 1 |
| Revision History                    | 2 |
| Getting Started                     | 3 |
| Evaluation Board Setup Procedure    | 3 |

| Evaluation Board Hardware               | 4  |
|-----------------------------------------|----|
| Power Supply                            | 4  |
| Input Signals                           |    |
| Output Signals                          |    |
| Jumper Settings                         |    |
| Link Headers                            |    |
|                                         |    |
| SMB Connectors                          |    |
| Evaluation Board Schematics and Artwork |    |
| Dill of Matarials                       | 11 |

### **REVISION HISTORY**

10/15—Revision 0: Initial Version

## **GETTING STARTED**

### **EVALUATION BOARD SETUP PROCEDURE**

The EVAL-ADG5243FEBZ board operates independently and does not require any additional evaluation boards or software. An on-board LDO regulator is provided for digital control and supply voltage.

Supply the evaluation board with a dual-supply power source of up to ±22 V or a single-supply power source of up to 44 V. For single-supply operation, connect VSS to GND using Connector J4.

Set up a simple functionality test as follows:

- 1. Connect a power supply to J4. If a single supply is required, connect VSS and GND together.
- 2. Ensure that a 0  $\Omega$  resistor is inserted in R44 to use the on-board LDO regulator, and that a 0  $\Omega$  resistor is inserted into R29. SW1 to SW4 control the digital signals for each switch on the ADG5243F.
- 3. LED1 and LED3 illuminate green to indicate that the multiplexer is operating normally.

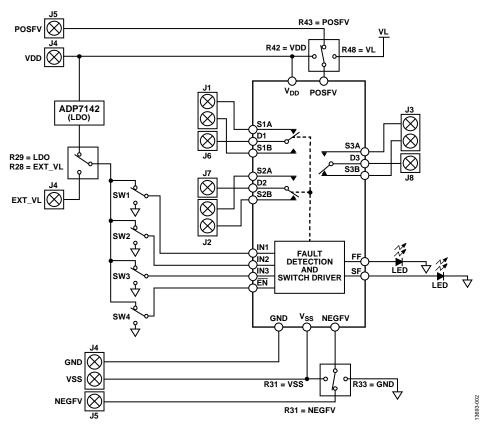



Figure 2. EVAL-ADG5243FEBZ Block Diagram

## **EVALUATION BOARD HARDWARE**

Evaluate the operation of the ADG5243F using the EVAL-ADG5243FEBZ. Figure 1 shows a typical evaluation setup where only power supply and signal generator are required. Figure 2 shows a block diagram of the main components of the evaluation board.

Using the evaluation board, the ADG5243F passes signals from either the source or the drain connectors. The source pins have fault detection circuitry that reacts to an overvoltage. During an overvoltage event, the channel where the fault occurs turns off, and the FF pin pulls low. The SF pin pulls low when the  $\overline{\rm EN}/{\rm F0}$ , IN1/F1, or IN2/F2 pins select the source where the overvoltage occurs. See the ADG5243F data sheet for further details.

### **POWER SUPPLY**

Connector J4 provides access to the supply pins of the ADG5243F. VDD, GND, and VSS link to the appropriate pins of the ADG5243F. For dual supply voltages, power the evaluation board from  $\pm 5$  V to  $\pm 22$  V. For single supply voltages, connect the GND and VSS terminals and power the evaluation board with 8 V to 44 V. Additionally, an on-board LDO regulator is provided for digital control voltage. If necessary, connect a secondary voltage source to EXT\_VL and use it as the digital control voltage. To use EXT\_VL, move the 0  $\Omega$  resistor from R29 to R28. Do not expose the on-board LDO regulator to voltages greater than 28 V; remove R44 and supply an alternative digital voltage via EXT\_VL, if required.

### **INPUT SIGNALS**

Six screw connectors are provided to connect both the source and drain pins of the ADG5243F. Additional subminiature Version B (SMB) connector pads are provided if extra connections are required. The ADG5243F is overvoltage protected on the source side, and each source terminal (SxA to SxB) can be presented

with a voltage of up to +55 V or -55 V. See the ADG5243F data sheet for more details.

Each trace on the source and drain side includes two sets of 0603 pads, which can be used to place a load on the signal path to ground. A 0  $\Omega$  resistor is placed in the signal path and can be replaced with a user defined value. Use the resistor combined with the 0603 pads to create a simple resistor/capacitor (RC) filter.

The ADG5243F uses a parallel interface to control the operation of the switches. The switch operation can be manually controlled using SW1 to SW4, or an external controller can be interfaced directly to the control pins by using the SMB connectors  $(\overline{EN}/F0, IN1/F1, IN2/F2, and IN3)$  and remove the 0  $\Omega$  resistors: R54, R22, R23, and R52.

### **OUTPUT SIGNALS**

There are two outputs on the ADG5243F. The FF pin indicates when the device is operating normally or whether there is an overvoltage fault on one of the source pins. The SF pin also indicates when an overvoltage fault occurs on one of the source pins and transitions low only when an overvoltage occurs on the channels selected by the  $\overline{\text{EN}/\text{F0}}$ ,  $\overline{\text{IN1/F1}}$  and  $\overline{\text{IN2/F2}}$  inputs.

For visual indication, an LED is mounted on the evaluation board. When the device is operating normally, the FF and SF pins remain high, and LED1 and LED3 illuminate green. If an overvoltage occurs at any of the source pins, the FF pin pulls low and LED4 illuminates red. If an overvoltage occurs at the source pin selected by  $\overline{\text{EN}}/\text{F0}$ , IN1/F1, and IN2/F2, the SF pin pulls low and LED2 illuminates red.

SMB connectors are provided to interface the evaluation board with external controllers.

## JUMPER SETTINGS LINK HEADERS

The switches on the evaluation board control the ADG5243F manually, and 0  $\Omega$  resistors are used to configure the VL supply voltage, the voltage present on POSFV and NEGFV, and to isolate the LEDs from the remainder of the system. Table 2 shows a summary of the uses of the switches and 0  $\Omega$  resistors on the evaluation board.

Use SW1 to SW4 to control the switches of the ADG5243F. Position L is tied to GND and sets the logic low. Position H is tied to VL and sets the logic high.

Use SW1 to enable or disable the device. Position DIS is tied to VL and disables the device. Position  $\overline{\rm EN}$  is tied to GND and enables the device.

Table 1. ADG5243F Truth Table<sup>1</sup>

| SW2<br>(IN1/F1) | SW2<br>(IN2/F2)         | SW4<br>(IN3)                                                                                                                                                                        | Connected Sx                                                                                                                                                                                                                                                            |  |  |  |
|-----------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Χ               | Χ                       | Χ                                                                                                                                                                                   | All switches off                                                                                                                                                                                                                                                        |  |  |  |
| L               | Χ                       | Χ                                                                                                                                                                                   | S1B                                                                                                                                                                                                                                                                     |  |  |  |
| Н               | Χ                       | Х                                                                                                                                                                                   | S1A                                                                                                                                                                                                                                                                     |  |  |  |
| Χ               | L                       | Х                                                                                                                                                                                   | S2B                                                                                                                                                                                                                                                                     |  |  |  |
| Χ               | Н                       | Х                                                                                                                                                                                   | S2A                                                                                                                                                                                                                                                                     |  |  |  |
| Χ               | Χ                       | L                                                                                                                                                                                   | S3B                                                                                                                                                                                                                                                                     |  |  |  |
| Χ               | Χ                       | Н                                                                                                                                                                                   | S3A                                                                                                                                                                                                                                                                     |  |  |  |
|                 | (IN1/F1)  X  L  H  X  X | (IN1/F1)         (IN2/F2)           X         X           L         X           H         X           X         L           X         H           X         X           X         X | (IN1/F1)         (IN2/F2)         (IN3)           X         X         X           L         X         X           H         X         X           X         L         X           X         H         X           X         X         L           X         X         L |  |  |  |

<sup>&</sup>lt;sup>1</sup> X means don't care.

R44 connects the on-board LDO regular to the VDD supply. Remove this resistor to isolate the LDO regulator from the input screw terminals. Change the 0  $\Omega$  resistor from position R29 to R28 to use an alternative digital supply voltage from EXT\_VL screw terminal.

The R49, R50, R20, and R21 resistors connect the LEDs to the digital power supply. R56 and R26 connect the FF and SF pins of the ADG5243F to the LED controls.

The R42, R43, and R48 resistors configure POSFV to either VDD, the voltage present on POSFV on J5, or VL. The R31, R32, and R33 resistors configure NEGFV to either VSS, the voltage present on NEGFV on J5, or GND.

### **SMB CONNECTORS**

The SW1 to SW4 switches allow the user to manually control the parallel interface of the ADG5243F. Alternatively, the SMB connectors ( $\overline{\text{EN}}/\text{F0}$ , IN1/F1, IN2/F2, F3) can be populated to allow control via external control signals. To use the SMB connectors, remove the 0  $\Omega$  resistors: R54, R22, R23, and R53. The FF/SF SMB connectors to access the FF/SF digital outputs from the ADG5243F.

Table 2. Switch and 0  $\Omega$  Resistor Descriptions

| Label                 | Position | Description                          |
|-----------------------|----------|--------------------------------------|
| SW1                   | EN       | Logic 0 on EN/F0 pin                 |
|                       | DIS      | Logic 1 on EN/F0 pin                 |
| SW2                   | L        | Logic 0 on IN1/F1 pin                |
|                       | Н        | Logic 1 on IN1/F1 pin                |
| SW3                   | L        | Logic 0 on IN2/F2 pin                |
|                       | Н        | Logic 1 on IN2/F2 pin                |
| SW4                   | L        | Logic 0 on IN3 pin                   |
|                       | Н        | Logic 1 on IN3 pin                   |
| R42, R43, R48         | R42      | POSFV set to VDD                     |
|                       | R43      | POSFV set to voltage on J5 POSFV     |
|                       |          | screw terminal                       |
|                       | R48      | POSFV set to VL                      |
| R31, R32, R33         | R31      | NEGFV set to VSS                     |
|                       | R32      | NEGFV set to voltage on J5 NEGFV     |
|                       |          | screw terminal                       |
|                       | R33      | NEGFV set to GND                     |
| R29, R28              | R29      | On-board LDO regulator digital       |
|                       |          | voltage                              |
|                       | R28      | EXT_VL digital voltage               |
| R44                   | Inserted | LDO regulator powered up             |
|                       | Removed  | LDO regulator unpowered              |
| R56, R26              | Inserted | FF and SF pins connected to LED      |
|                       | Removed  | FF and SF pins disconnected from LED |
| R49, R50,<br>R20, R21 | Inserted | LED connected to digital supply      |
|                       | Removed  | LED isolated                         |

# **EVALUATION BOARD SCHEMATICS AND ARTWORK**

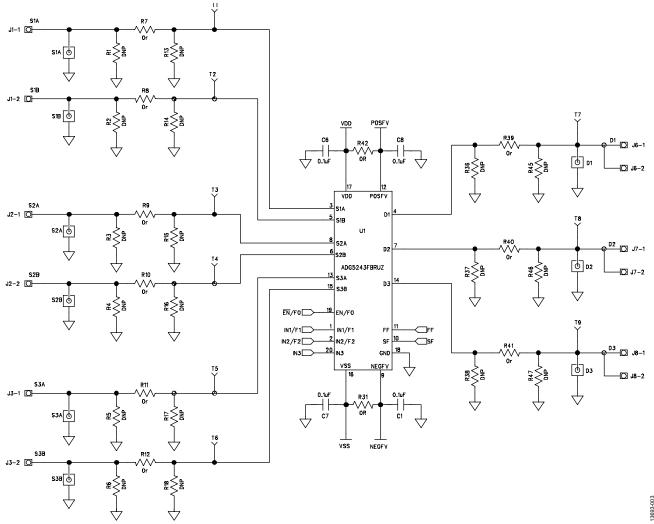



Figure 3. ADG5243F Evaluation Board Schematic (Part 1)

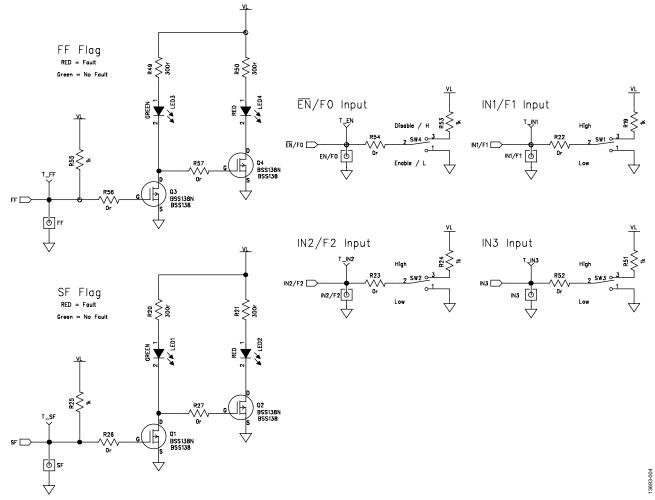



Figure 4. ADG5243F Evaluation Board Schematic (Part 2)

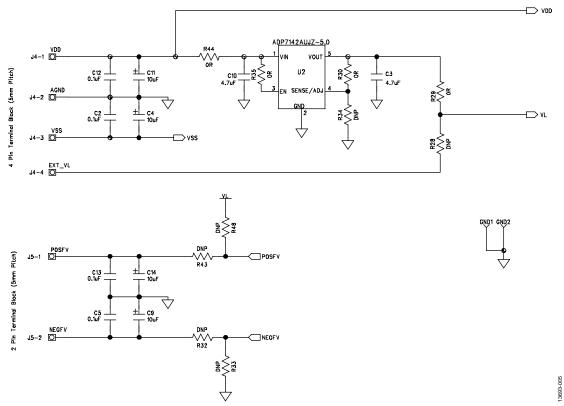



Figure 5. ADG5243F Evaluation Board Schematic (Part 3)

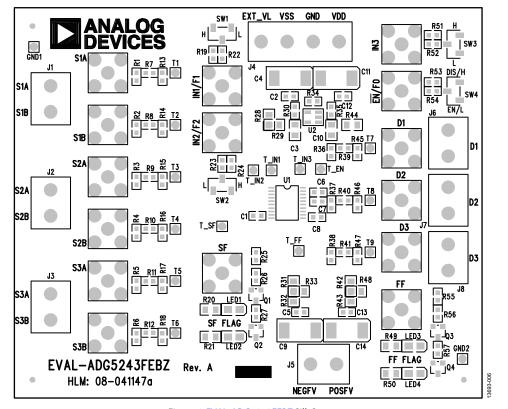



Figure 6. EVAL-ADG5243FEBZ Silk Screen

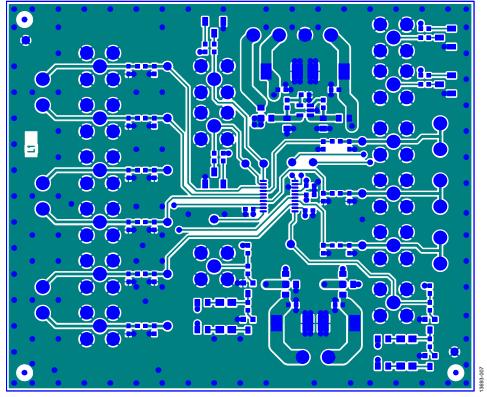



Figure 7. EVAL-ADG5243FEBZ Top Layer

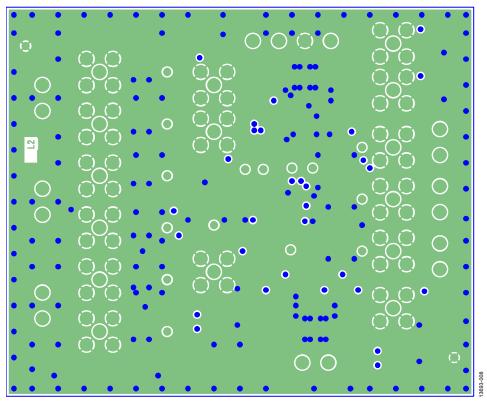



Figure 8. EVAL-ADG5243FEBZ Layer 2

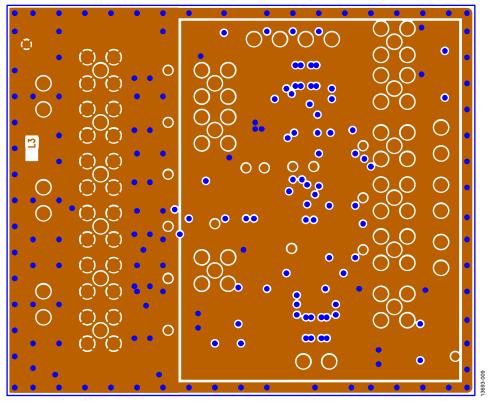



Figure 9. EVAL-ADG5243FEBZ Layer 3

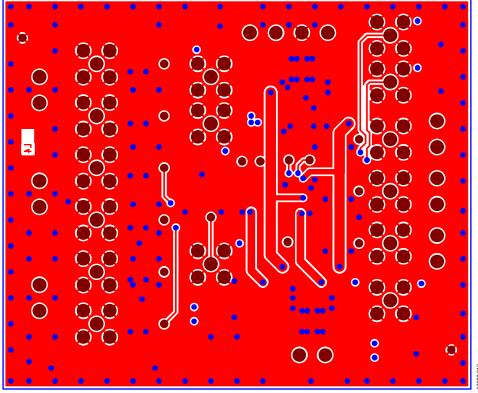



Figure 10. EVAL-ADG5243FEBZ Bottom Layer

# **BILL OF MATERIALS**

Table 3.

| Reference Designator                                                          | Description                                                 | Part Number         | Stock Code            |
|-------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------|-----------------------|
| C1, C2, C5 to C8, C12, C13                                                    | 50 V, X7R, multilayer, ceramic capacitor, 0603 size, 0.1 μF | GRM188R71H104KA93D  | FEC 882-0023          |
| C3, C10                                                                       | Ceramic, multilayer capacitor, 4.7 μF                       | C2012X5R1H475K125AB | FEC 2346932           |
| C4, C9, C11, C14                                                              | 50 V, tantalum capacitor, D size, 10 μF                     | TAJD106K050RNJ      | FEC 143-2387          |
| D1 to D3, S1A, S1B, S2A,<br>S2B, S3A, S3B                                     | 50 Ω, SMB socket                                            | SMB1251B1-3GT30G-50 | Do not insert         |
| EN/F0, FF, IN1/F1, IN2/F2, IN3, SF                                            | 50 Ω, straight SMB jack                                     | SMB1251B1-3GT30G-50 | FEC 1111349           |
| GND1, GND2                                                                    | Black test point                                            | 20-2137             | FEC 873-1128          |
| J1 to J8                                                                      | 2-pin terminal block (5 mm pitch)                           | CTB5000/2           | FEC 151789            |
| LED1, LED3                                                                    | LED, SMD, green, 0805                                       | KP-2012SGC          | FEC 1318243           |
| LED2, LED4                                                                    | LED, SMD, red, 0805                                         | KP-2012SRC-PRV      | FEC 1318244           |
| Q1 to Q4                                                                      | Transistor, N-MOSFET, 60 V, 0.23 A, SOT-23                  | BSS138N             | FEC 115-6434          |
| R1 to R6, R13 to R18, R34,<br>R36 to R38, R45 to R47                          | SMD, resistor, 0603                                         | Not applicable      | Do not place          |
| R7 to R12, R22, R23, R26,<br>R27, R30, R35, R39 to R41,<br>R52, R54, R56, R57 | Resistor, 0603, 1%, 0 Ω                                     | MC0063W06030R       | FEC 9331662           |
| R19, R24, R25, R51, R53, R55                                                  | Resistor, 1 kΩ, 0.063 W, 1%, 0603                           | MC0063W060311K      | FEC 9330380           |
| R20, R21, R49, R50                                                            | Resistor, 300 Ω, 0.1 W, 1%, 0805                            | MC01W08051300R      | FEC 9332987           |
| R28, R32, R33, R43, R48                                                       | SMD, resistor, 0805                                         | Not applicable      | Do not place          |
| R29, R31, R42, R44                                                            | Resistor, 0805, 1%, 0 Ω                                     | MC01W08050R         | FEC 9333681           |
| SW1 to SW4                                                                    | SPDT, SMT, slide switch                                     | CAS-120TA           | Digi-Key CAS120JCT-ND |
| T1 to T9, T_EN, T_FF, T_IN1,<br>T_IN2, T_IN3, T_SF                            | Red test point                                              | 20-313137           | FEC 873-1144          |
| U1                                                                            | Fault protection and detection, 1 pC, QINJ, triple SPDT     | ADG5243FBRUZ        | ADG5243FBRUZ-RL7      |
| U2                                                                            | Linear regulator, 5.0 V, LDO                                | ADP7142AUJZ-5.0     | ADP7142AUJZ-5.0-R7    |

UG-894

**EVAL-ADG5243FEBZ User Guide** 

## **NOTES**



#### **ESD Caution**

**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

#### **Legal Terms and Conditions**

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, nonexclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI Specifically disclaims any representations, endorsements, guarantees, or warranties, express or implied, related to the evaluation board including, but not limited to, the implied WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LAROR COSTS OR LOSS OF GOODWILL ADI'S TOTAL LIABILITY FROM ANY AND ALL CALISES SHALL RELIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS (\$100.00) EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nation's Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

©2015 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

UG13693-0-10/15(0)



www.analog.com