STRUCTURE Silicon Monolithic Integrated Circuit
NAME OF PRODUCT DC-AC Inverter Control IC

TYPE
BD9892K

FUNCTION • 4ch control with Push-Pull

- Short circuit protection with Timer Latch
- Sequencing easily achieved with Soft Start Control
- Under Voltage Lock Out
- Short circuit protection with over voltage
- Mode-selectable the operating or stand-by mode by stand-by pin
- Synchronous operating the other BD9892FV IC’ s
- BURST mode controlled by PWN and DC input
- Output linear control by external DC voltage

OAbsolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Limits	Unit
Supply Voltage	Vcc	15	V
Operating Temperature Range	Topr	$-40 \sim+90$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$
Power Dissipation	Pd	1062^{*}	mW
Maximum Junction Temperature	Tjmax	+150	${ }^{\circ} \mathrm{C}$

*Pd derated at $8.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for temperature above $\mathrm{Ta}=25^{\circ} \mathrm{C}$ (When mounted on a PCB $70.0 \mathrm{~mm} \times 70.0 \mathrm{~mm} \times 1.6 \mathrm{~mm}$)
OOperating condition

Parameter	Symbol	Limits	Unit
Supply voltage	Vcc	$5.5 \sim 14.0$	V
CT oscillation frequency	fСт	$20 \sim 150$	kHz
BCT oscillation frequency	fВСТ	$0.05 \sim 0.50$	kHz

Status of this document
The Japanese version of this document is the official specification.
Please use the translation version of this document as a reference to expedite understanding of the official version. If these are any uncertainty in translation version of this document, official version takes priority.

OElectric Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=7 \mathrm{~V}$)

Parameter	Symbol	Limits			Unit	Conditions
		MIN.	TYP.	MAX.		
((WHOLE DEVICE))						
Operating current	Icc1	-	15.0	23.0	mA	$\mathrm{CT}=0.5 \mathrm{~V}$
Stand-by current	Icc2	-	2	10	$\mu \mathrm{A}$	
((OVER VOLTAGE DETECT))						
FB over voltage detect voltage	Vovf	2. 20	2. 40	2. 60	V	
((STAND BY CONTROL))						
Stand-by voltage H	VstH	2. 0	-	VCC	V	System O N
Stand-by voltage L	VstL	-0.3	-	0.8	V	System O F F
((TIMER LATCH))						
Timer Latch voltage	Vcp	1.9	2.0	2.1	V	
Timer Latch current	Icp	0.5	1.0	1.5	$\mu \mathrm{A}$	
((BURST MODE))						
BOSC Max voltage	VburH	1. 94	2.0	2. 06	V	fвct $=0.2 \mathrm{kHz}$ BCT (A, B) common spec
BOSC Min Voltage	VburL	0.4	0.5	0.6	V	$\begin{aligned} & \text { fвCT }=0.2 \mathrm{kHz} \\ & \mathrm{BCT}(\mathrm{~A}, \mathrm{~B}) \text { common spec } \end{aligned}$
BOSC constant current	IBCT	1.35/BRT	1.5/BRT	1.65/BRT	A	$\mathrm{BCT}(\mathrm{A}, \mathrm{B})$ common spec
BOSC constant current	fBCT	292.5	300.0	307.5	Hz	$\begin{aligned} & \mathrm{BRT}=36 \mathrm{k} \Omega \quad \mathrm{BCT}=0.048 \mu \mathrm{~F} \\ & \mathrm{BCT}(\mathrm{~A}, \mathrm{~B}) \text { common spec } \end{aligned}$
((OSC BLOCK))						
OSC constant current	Ict	1.35/RT	1.5/RT	1.65/RT	A	
OSC Max voltage	Vosch	1.8	2.0	2.2	V	fct $=60 \mathrm{kHz}$
OSC Min voltage	VoscL	0.3	0.5	0.7	V	fct $=60 \mathrm{kHz}$
MAX DUTY	MAXDUTY	44	46.5	49	\%	fct $=60 \mathrm{kHz}$
Soft start current	Iss	1.0	2.0	3.0	$\mu \mathrm{A}$	
IS COMP detect Voltage	Visc	0.45	0.50	0.55	V	
SS COMP detect voltage	Vss	2.0	2.2	2.4	V	SS (A, B) common spec
SRT ON resistance	RSRT	-	200	400	Ω	
((UVLO BLOCK))						
Operating voltage	V_A_uvloh	4.95	5.15	5.35	V	$\mathrm{VCC}(\mathrm{A}, \mathrm{B})$ common spec
Hysteresis width	UV_A_uv lo	0.21	0.29	0.037	V	$\mathrm{VCC}(\mathrm{A}, \mathrm{B})$ common spec
Operating voltage (External UVLO)	Vuvlo2	2. 242	2. 315	2. 388	V	
Hysteresis width	$\Delta \mathrm{Vuv}$ lo2	0.083	0.110	0.137	V	
FB OVP Mask Threshold voltage	Vuvlo_fb	2. 222	2. 315	2. 407	V	
((REG BLOCK))						
REG output voltage	VREG	3.038	3.100	3. 162	V	
REG source current	IREG	5.0	-	-	mA	
((FEED BACK BLOCK))						
IS threshold voltage	Vis	1. 225	1. 250	1. 275	V	Connected REG When Vref pin is open IS (1, 2, 3, 4) common spec
VS threshold voltage	Vvs	1. 220	1. 250	1. 280	V	VS (1, 2, 3, 4) common spec
IS source current 1	lis1	-	-	1.5	$\mu \mathrm{A}$	$\begin{aligned} & \text { DUTY }=2 . \text { OV } \\ & \text { IS }(1,2,3,4) \text { common spec } \end{aligned}$
IS source current 2	Iis2	13.0	20.0	27.0	$\mu \mathrm{A}$	$\begin{aligned} & \text { DUTY }=0 \mathrm{~V}, ~ I S=0.5 \mathrm{~V} \\ & \text { IS }(1,2,3,4) \text { common spec } \end{aligned}$
VS source current	Ivs	-	-	1.0	$\mu \mathrm{A}$	VS (1, 2, 3, 4) common spec
((OUTPUT BLOCK))						
NAch output voltage H	VoutNAH	VCC-0.3	VCC-0.1	-	V	NA (1, 2, 3, 4) common spec
NBch output voltage H	VoutNBH	VCC-0.3	VCC-0.1	-	V	NB (1, 2, 3, 4) common spec
NAch output voltage L	VoutNAL	-	0.1	0.3	V	$\mathrm{NA}(1,2,3,4)$ common spec
NBch output voltage L	VoutNBL	-	0.1	0.3	V	$\mathrm{NB}(1,2,3,4)$ common spec
NAch output sink resistance	RsinkNA	-	5	10	Ω	$\begin{aligned} & \text { Isink }=10 \mathrm{~mA} \\ & \mathrm{NA}(1,2,3,4) \text { common spec } \end{aligned}$
NAch output source resistance	RsourceNA	-	8	16	Ω	I source $=10 \mathrm{~mA}$ NA (1, 2, 3, 4) common spec
NBch output sink resistance	RsinkNB	-	5	10	Ω	$\begin{aligned} & \text { Isink }=10 \mathrm{~mA} \\ & \mathrm{NB}(1,2,3,4) \text { common spec } \end{aligned}$
NBch output source resistance	RsourceNB	-	8	16	Ω	$\begin{aligned} & \text { I source }=10 \mathrm{~mA} \\ & \text { NB }(1,2,3,4) \text { common spec } \end{aligned}$
Drive output frequency	fout	58.5	60.0	61.5	KHz	$\begin{aligned} & \mathrm{RT}=20 \mathrm{k} \Omega, \quad \mathrm{CT}=420 \mathrm{pF} \\ & \mathrm{NA}, \mathrm{NB}(1,2,3,4) \text { common spec } \end{aligned}$
((COMP BLOCK))						
Over voltage detect	VCOMP	3.033	3.100	3. 167	V	$\operatorname{COMP}(\mathrm{A}, \mathrm{B})$ common spec
Hysteresis width	$\triangle \mathrm{VCOMP}$	0.07	0.1	0.13	V	$\operatorname{COMP}(\mathrm{A}, \mathrm{B})$ common spec
((PROTECT CLOCK))						
Normal output voltage	VPH	2.9	3.1	3.3	V	
Protect output voltage	VPL	-	-	0.5	V	

[^0]OPackage Dimensions

QFP44 (unit:mm)

OBlock Diagram

OPin Description

Pin No.	Pin Name	Function
1	COMP_A	Over voltage detect for 1ch, 2ch
2	NA1	FET driver for 1ch
3	NB1	FET driver for 1ch
4	PGND_A	Ground for FET drivers
5	NB2	FET driver for 2ch
6	NA2	FET driver for 2ch
7	STB	Stand-by switch
8	VCC_A	Supply voltage input
9	VREF	Reference voltage input for IS error amplifier
10	FAIL	Protect clock output
11	PH	Shift control input
12	REG	Internal regulator output
13	DUTY	Control PWM mode and BURST mode
14	BRT	External resistor from BRT to GND for adjusting the BURST triangle oscillator
15	BCT_B	External capacitor from BCT to GND for adjusting the BURST triangle oscillator for 3ch, 4ch
16	BCT_A	External capacitor from BCT to GND for adjusting the BURST triangle oscillator for 1ch, 2ch
17	GND	GROUND
18	CT	External capacitor from CT to GND for adjusting the triangle oscillator
19	RT	External resistor from RT to GND for adjusting the triangle oscillator
20	SRT	External resistor from SRT to RT for adjusting the triangle oscillator
21	CP_A	External capacitor from CP to GND for Timer Latch for 1ch, 2ch
22	CP_B	External capacitor from CP to GND for Timer Latch for 3ch, 4ch
23	SS_A	External capacitor from SS to GND for Soft Start Control 1ch, 2ch
24	SS_B	External capacitor from SS to GND for Soft Start Control 3ch, 4ch
25	VCC_B	Supply voltage input
26	UVL0	External Under Voltage Lock OUT
27	NA4	FET driver for 4ch
28	NB4	FET driver for 4ch
29	PGND_B	Ground for FET drivers
30	NB3	FET driver for 3ch
31	NA3	FET driver for 3ch
32	COMP_B	Over voltage detect for 3ch, 4ch
33	VS4	Error amplifier input(4)
34	IS4	Error amplifier input(4)
35	FB4	Error amplifier output(4)
36	VS3	Error amplifier input(3)
37	IS3	Error amplifier input(3)
38	FB3	Error amplifier output(3)
39	FB2	Error amplifier output(2)
40	IS2	Error amplifier input(2)
41	VS2	Error amplifier input(2)
42	FB1	Error amplifier output(1)
43	IS1	Error amplifier input(1)
44	VS1	Error amplifier input(1)

ONOTE FOR USE

1. When designing the external circuit, including adequate margins for variation between external devices and the IC.Use adequate margins for steady state and transient characteristics.
2. Recommended Operating Range

The circuit functionality is guaranteed within of ambient temperature operation range as long as it is within recommended operating range. The standard electrical characteristic values cannot be guaranteed at other voltages in the operating ranges, however, the variation will be small.
3. Mounting Failures

Mounting failures, such as misdirection or miscounts, may harm the device.
4. Electromagnetic Fields

A strong electromagnetic field may cause the IC to malfunction.
5. The GND pin should be the location within $\pm 0.3 \mathrm{~V}$ compared with the $\operatorname{PGND}(\mathrm{A}, \mathrm{B})$ pin
6. BD9892K has the short circuit protection with Thermal Shut Down System. When STB or Vcc pin re-supplied, They enables to cancel the latch. If It rise the temperature of the chip more than $170^{\circ} \mathrm{C}$ (TYP), It make the external FET OFF
7. Absolute maximum ratings are those values that, if exceeded, may cause the life of a device to become significantly shortened. Moreover, the exact failure mode caused by short or open is not defined. Physical countermeasures, such as a fuse, need to be considered when using a device beyond its maximum ratings.
8. About the external FET, the parasitic Capacitor may cause the gate voltage to change, when the drain voltage is switching. Make sure to leave adequate margin for this IC variation.
9. On operating Slow Start Control (SS (A, B) is less than 2. 2V), It does not operate Timer Latch.
10. By STB voltage, BD9892K is changed to 2 states. Therefore, do not input STB pin voltage between one state and the other state ($0.8 \sim 2.0$).
11. The pin connected a connector need to connect to the resistor for electrical surge destruction.
12. This IC is a monolithic IC which (as shown is Fig-1) has P^{+}substrate and between the various pins. A P-N junction is formed from this P layer of each pin. For example, the relation between each potential is as follows,

O (When GND > PinB and GND > PinA, the P-N junction operates as a parasitic diode.)
O (When $\mathrm{PinB}>\mathrm{GND}>\mathrm{PinA}$, the $\mathrm{P}-\mathrm{N}$ junction operates as a parasitic transistor.)
Parasitic diodes can occur inevitably in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits as well as operation faults and physical damage. Accordingly you must not use methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin.

Fig. 1 Simplified structure of a Bipolar IC

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

[^0]: (This product is not designed for normal operation with in a radio active environment.)

