
Digi MicroPython

Programming Guide

Revision history—90002219

Revision Date Description

C January
2018

Added: I2C support, the PWM function, the UART class, how to access the
primary UART.

D February
2018

Removed the readlines and readinto methods.

E March
2018

Updated the banner in code examples. Added Zigbee support for XBee3.

F June
2018

Removed some information for the Cellular 0B firmware release. Added file
system support for XBee Cellular devices. Documented the OSError(ENXIO).

G July
2018

Added AWS support for Cellular devices.

Trademarks and copyright
Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United
States and other countries worldwide. All other trademarks mentioned in this document are the
property of their respective owners.
© 2018 Digi International Inc. All rights reserved.

Disclaimers
Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International. Digi provides this document “as is,” without warranty of
any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or
merchantability for a particular purpose. Digi may make improvements and/or changes in this manual
or in the product(s) and/or the program(s) described in this manual at any time.

Warranty
To view product warranty information, go to the following website:

www.digi.com/howtobuy/terms

Customer support
Gather support information: Before contacting Digi technical support for help, gather the following
information:
 Product name andmodel
 Product serial number (s)
 Firmware version
 Operating system/browser (if applicable)

Digi MicroPython Programming Guide 2

http://www.digi.com/howtobuy/terms

 Logs (from time of reported issue)
 Trace (if possible)
 Description of issue
 Steps to reproduce

Contact Digi technical support: Digi offers multiple technical support plans and service packages.
Contact us at +1 952.912.3444 or visit us at www.digi.com/support.

Feedback
To provide feedback on this document, email your comments to

techcomm@digi.com

Include the document title and part number (Digi MicroPython Programming Guide, 90002219 F) in the
subject line of your email.

Digi MicroPython Programming Guide 3

http://www.digi.com/support
mailto:techcomm@digi.com

Contents

Digi MicroPython Programming Guide
Reference material 9

Which features apply to my device?

Use MicroPython
Access the MicroPython environment 13
Enter MicroPython code 13

Direct entry 13
Exit MicroPython 13
Display tools 13
Coding tips 13

MicroPython syntax
Colons 16

After conditional statements and loop statements 16
Indentations 16

FOR loop with one statement indented 16
FOR loop with two statements indented 17

Functions 17
Function with arguments 17

Errors and exceptions
Syntax error 20

Example 20
Name error 20

Referencing a name that was not created 20
Referencing a name from one function that was created in a different function 20

OSError 21
Socket errors 21

ENOTCONN: Time out error 21
ENFILE: No sockets are available 21
ENXIO: No such device or address 21

Digi MicroPython Programming Guide 4

Digi MicroPython Programming Guide 5

Keyboard shortcuts
Keyboard shortcuts 23
Select a previously typed statement 23

Differences between MicroPython and other programming languages
Memory management 25
Variable types 25
Syntax 25

Curly braces and indentation 26
Semicolons 27
Increment operator 27
Logical operators 28

Power management with MicroPython
Sleeping with AT commands: XBee Cellular Modem 30
Initiate sleep from MicroPython 30
Sleeping with AT commands: XBee3 Zigbee RF Module 32

Access the primary UART
How to use the primary UART 34

sys.stdin limitations 34
Example 34

REPL (Read-Evaluate-Print Loop) examples
Ctrl+A: Enter raw REPL mode 37
Ctrl+B: Print the MicroPython banner 37

Print the banner 38
Print the banner and verify that the memory was not wiped 38

Ctrl+C: Regain control of the terminal 39
Ctrl+D: Reboot the MicroPython REPL 39
Ctrl+E: Enter paste mode 40

Paste one line of code 40
Paste a code segment 41

Ctrl+F: Upload code to flash 41
Upload code to flash memory 42
Erase the code stored in flash memory 43

Flash memory and automatic code execution 43
Run stored code at start-up to flash LEDs 43
Disable code from running at start up 44
Ctrl+R: Run code in flash 45
Enable code to run at start-up 45

Perform a soft-reset or reboot 46

Access file system in MicroPython
Modify file system contents 48

uos.chdir(dir) 48

Digi MicroPython Programming Guide 6

uos.getcwd() 48
uos.ilistdir([dir]) 48
uos.listdir([dir]) 48
uos.mkdir(dir) 48
uos.remove(file) 48
uos.rmdir(dir) 48
uos.rename(old_path, new_path) 48
uos.replace(old_path, new_path) 49
uos.sync() 49
uos.compile(source_file, mpy_file=None) 49
uos.format() 49
uos.hash([secure_file]) 49

Access data in files 50
File object methods 50

read(size=-1) 50
readinto(b) 50
readline(size=-1) 50
readlines() 51
write(b) 51
seek(offset, whence=0) 51
tell() 51
flush() 51
close() 51

Import modules from file system 51
Reload a module 51
Compiled MicroPython files 52

MicroPython libraries on GitHub

The ussl module
ussl on the XBee Cellular Modem 55
Syntax 55

Usage 55
Sample code 56

Use AWS IoT from MicroPython
Add an XBee Cellular Modem as an AWS IoT device 61
Create a policy for access control 61
Create a Thing 62
Install the certificates 63
Test the connection 64
Publish to a topic 66
Confirm published data 67
Subscribe to updates from AWS 67

Time module example: get the current time
Retrieve the local time 70
Retrieve time with a loop 70
Delay and timing quick reference 71

Digi MicroPython Programming Guide 7

Cellular network connection examples
Check the network connection 73
Check network connection with a loop 73
Check network connection and print connection parameters 74

Socket examples
Sockets 77
Basic socket operations: sending and receiving data, and closing the network connection 77

Basic data exchange code sample 77
Response header lines 78

Specialized receiving: send received data to a specific memory location 79
DNS lookup 80

DNS lookup code output 81
Set the timeout value and blocking/non-blocking mode 81
Send an HTTP request and dump the response 83
Socket errors 83

ENOTCONN: Time out error 84
ENFILE: No sockets are available 84
ENXIO: No such device or address 84

Unsupportedmethods 84

I/O pin examples
Change I/O pins 86
Print a list of pins 86
Change output pin values: turn LEDs on and off 86
Poll input pin values 87
Check the configuration of a pin 88
Check the pull-upmode of a pin 89
Measure voltage on the pin (Analog to Digital Converter) 91

SMS examples
Send an SMS message 94
Send an SMS message to a valid phone number 94
Check network connection and send an SMS message 94
Send to an invalid phone number 95
Receive an SMS message 95

Sample code 96

AT command examples
Print the temperature of the XBee Cellular Modem 98
Print the temperature of the XBee3 Zigbee RF Module 98
Print a list of AT commands 99

MicroPython modules
XBee-specific functions 103
Standardmodules and functions 103

Digi MicroPython Programming Guide 8

Discover available modules 104

Machine module
Reset-cause 106

Constants 106
Random numbers 106
Unique identifier 106
Class PWM (pulse width modulation) 106
Class ADC: analog to digital conversion 107

Constructors 107
Methods 107

Class I2C: two-wire serial protocol 108
Constructors 108
General methods 108
Standard bus operations methods 109
Memory operations methods 109
Sample program 109

Class Pin 111
Class UART 111

Test the UART interface 112
Use the UART class 112
Constructors 113
Methods 113
Constants 114

Cellular network configuration module
Configure a specific network interface 116
class Cellular 116

Constructors 117
Cellular power and airplane mode method 117
Verify cellular network connection method 117
Cellular connection configuration method 117
Send an SMS message method 117
Receive an SMS message method 118

XBee module
class XBee on XBee Cellular Modem 120

Constructors 120
Methods 120

XBee MicroPython module on the XBee3 Zigbee RF Module 120
Functions 120
atcmd() 121
discover() 121
receive() 122
transmit() 122

Digi MicroPython Programming Guide

This guide introduces the MicroPython programming language by showing how to create and run a
simple MicroPython program. It includes sample code to show how to use MicroPython to perform
actions on a Digi device, particularly those devices with Digi-specific behavior. It also includes
reference material that shows how MicroPython coding can be used with Digi devices.
You can code MicroPython to transform cryptic readings into useful data, filter out excess
transmissions, directly employ modern sensors and actuators, and use operational logic to glue inputs
and outputs together in an intelligent way.
The XBee Cellular Modem has MicroPython running on the device itself. You can access a MicroPython
prompt from the XBee Cellular Modem when you install it in an appropriate development board (XBDB
or XBIB), and connect it to a computer via a USB cable.

Reference material
MicroPython is an open-source programming language based on the Python 3 standard library.
MicroPython is optimized to run on a microcontroller, cellular modem, or embedded system.
Refer to the Get started with MicroPython section of the appropriate user guide for information on
how to enter the MicroPython environment and several simple examples to get you started:

n Digi XBee Cellular Embedded Modem User Guide

n Digi XBee Cellular 3G Global Embedded Modem User Guide

n Digi XBee3 Cellular LTE Cat 1 Smart Modem User Guide

n Digi XBee3 Cellular LTE-M Global Smart Modem User Guide

n XBee3 Zigbee RF Module User Guide

This programming guide assumes basic programming knowledge. For help with programming
knowledge, you can refer to the following sites for Python and MicroPython:

n MicroPython: micropython.org
n MicroPython documentation: docs.micropython.org
n MicroPython Wiki: wiki.micropython.org
n Python: python.org

Digi MicroPython Programming Guide 9

https://www.digi.com/resources/documentation/digidocs/90001525/default.htm
https://www.digi.com/resources/documentation/Digidocs/90001541/
https://www.digi.com/resources/documentation/Digidocs/90002253/
http://www.digi.com/resources/documentation/Digidocs/90002258/
https://www.digi.com/resources/documentation/Digidocs/90001539/
http://micropython.org/
http://docs.micropython.org/en/latest/pyboard/
http://wiki.micropython.org/Home
https://www.python.org/about/gettingstarted/

Which features apply to my device?

MicroPython features and errors differ depending on the device you use. This table covers which
features apply to specific products:

Feature XBee/XBee3 Cellular XBee3 Zigbee

Syntax error Applicable Applicable

Name error Applicable Applicable

OSError Applicable Not applicable

OSError on XBee3 Zigbee RF Module Not applicable Applicable

Socket errors Applicable Not applicable

Power management with MicroPython Supported Not supported

Access the primary UART Supported Supported1

REPL (Read-Evaluate-Print Loop) examples Supported Supported

Run stored code at start-up to flash LEDs Supported Not supported

Time module example: get the current time Supported Not supported

Cellular network connection examples Supported Not supported

Socket examples Supported Not supported

I/O pin examples Supported Not supported

SMS examples Supported Not supported

AT command examples Supported Supported

The ussl module Supported Not supported

MicroPython libraries on GitHub Supported Not supported

Use AWS IoT from MicroPython Supported Not supported

MicroPython modules Supported Supported

1The example in this section is not supported.

Digi MicroPython Programming Guide 10

Which features apply to my device?

Digi MicroPython Programming Guide 11

Feature XBee/XBee3 Cellular XBee3 Zigbee

Machine module Supported Supported

Class ADC: analog to digital conversion Supported Not supported

Class I2C: two-wire serial protocol Supported Not supported

Class Pin Supported Not supported

Class UART Supported Not supported

Cellular network configuration module Supported Not supported

XBee module Supported Supported

Access file system in MicroPython Supported Not supported

Use MicroPython

Access the MicroPython environment 13
Enter MicroPython code 13
Exit MicroPython 13
Display tools 13
Coding tips 13

Digi MicroPython Programming Guide 12

Use MicroPython Access the MicroPython environment

Digi MicroPython Programming Guide 13

Access the MicroPython environment
To begin using MicroPython on the XBee device, open XCTU and enter MicroPython mode. See Use
XCTU to enter the MicroPython environment in the appropriate user guide.

Enter MicroPython code
You can use different methods to enter MicroPython code into the MicroPython Terminal on the XBee
device.

n Direct entry: Manually type code into the MicroPython Terminal.
n Paste mode: Use the REPL paste mode to paste copied code into the MicroPython Terminal for

immediate execution.
n Flash mode: Use the REPL flash mode to paste a block of code into the MicroPython Terminal

and store it in flash memory.

Direct entry
From a serial terminal, you can type code at the MicroPython REPL prompt. When you press Enter, the
line of code runs and another MicroPython prompt appears. Manually typing in code is the simplest
method.

Example

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type print("This is a simple line of code") and then press

Enter. The phrase in quotes prints in the terminal: This is a simple line of code

Exit MicroPython
When you are done coding, exit MicroPython by closing the MicroPython terminal. Any code that has
been executed will continue to run, even if the XBee device is set to Transparent or API mode.
For additional instructions, see the Exit MicroPython mode section in the appropriate user guide.

Display tools
MicroPython mode requires echo to be turned off in terminal emulation. Commandmode does not
echo your input back to you. In order to see what you are typing, use the appropriate display tool:

n MicroPython mode: For MicroPython coding, use the XCTU MicroPython Terminal or configure
your terminal emulator for "echo off."

n Command mode: For device configuration that is done in Commandmode (initiated by sending
+++ to the device), use the XCTU Serial Console or configure your terminal emulator for "echo
on."

Coding tips
For all XBee devices:

https://www.digi.com/resources/documentation/digidocs/90002219/Default.htm#reference/r_ref_material.htm
https://www.digi.com/resources/documentation/digidocs/90002219/Default.htm#reference/r_ref_material.htm
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#reference/r_micropython_terminal_tool.htm
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#reference/r_serial_console_tool.htm

Use MicroPython Coding tips

Digi MicroPython Programming Guide 14

n Use tabs instead of spaces when indenting lines of code to minimize source code byte count.
n Use the integer division operator (//) unless you need a floating point.
n MicroPython's struct_time does not include the tm_isdst element in the tuple.

For the XBee Cellular Modem:

n The XBee Cellular Modem supports the use of hostnames in socket.connect() calls, unlike
other MicroPython platforms that require an IP address obtained by doing a manual look-up
using socket.getaddrinfo().

For the XBee3 Zigbee RF Module:

n The Micropython time.time() function returns the number of seconds since the epoch. The
XBee3 Zigbee RF Module does not have a realtime clock, so it does not support time.time(). To
track elapsed time, use time.ticks_ms().

MicroPython syntax

Syntax refers to rules that must be followed when entering code into MicroPython. If you do not follow
the syntax rules when coding, errors are generated, and the code may not run as expected or not run
at all.
For information about coding errors, see Errors and exceptions.
The following sections describe coding syntax rules.

Colons 16
Indentations 16
Functions 17

Digi MicroPython Programming Guide 15

MicroPython syntax Colons

Digi MicroPython Programming Guide 16

Colons
MicroPython requires a colon (:) after you entered the following statement types:

n Function name and the arguments that function accepts, if any
n Condition statement
n Loop statement

Defining a function
A function consists of the following:

n def keyword
n Function name
n Any arguments the function takes, inside a set of parentheses. The parentheses remain empty

if there are no passed arguments
n The function declaration must be followed by a colon

The code sample below is a basic function definition. Note that a colon is entered after the function
name. This colon defines the following indented lines as part of the function. Indentation is equally
important, and is discussed in Indentations.

def sample_function():
print("I am a sample function!")

After conditional statements and loop statements
A colon is required after each conditional statement and loop statement. The code sample below
shows how the colon is used for a conditional statement (if True:) and for a loop statement (for x in
range(10):).

if True:
print("Condition is true!")

for x in range(10):
print("Current number: %d" % x)

Indentations
In MicroPython, an indentation tells the compiler which statements are members of a function,
conditional execution block, or a loop. If a line is not indented, that line is not considered a part of the
function, conditional execution block, or loop.
A function declaration, conditional execution block, or loop should be followed by a colon. All code after
the colon that is meant to be part of that block must be indented. For more information about how
colons are used in the code, see Colons.

FOR loop with one statement indented
In this example, only one statement after the initial FOR loop statement (which ends in a colon) is
indented. When the loop is executed, only line 2 of the code is executed. When the loop completes, the
code at line 3 executes.

MicroPython syntax Functions

Digi MicroPython Programming Guide 17

When this code executes, it prints "In the FOR loop, iteration # <number>" 10 times, where
<number> is 0 in the first loop of the code, and 9 at the last loop. Line 3 of the code runs one time,
after the loop completes, printing the phrase "Current number: 9" one time.

for x in range(10):
print("In the FOR loop, iteration # %d" % x)

print("Current number: %d" % x)

FOR loop with two statements indented
In this example, both statements after the initial FOR loop statement (which ends in a colon) are
indented. When the loop is executed, both print statements are printed in each loop iteration.
As in the previous example, the code prints "In the FOR loop, iteration # <number>", where
<number> is 0 in the first loop of the code, and 9 at the last loop. This time, however, line 3 of the code
is run in each loop iteration, and prints the phrase "Current number: number". Both phrases are
printed 10 times, with the <number> starting at 0 and increasing by one on each loop.

for x in range(10):
print("In the FOR loop, iteration # %d" % x)
print("Current number: %d" % x)

Functions
A function is an operation that performs an action andmay return a value. A function consists of the
following:

n def keyword. The def keyword is required, and is short for "define".
n Function name.
n Any arguments the function takes, defined by a set of parentheses. The parentheses remain

empty if there are no passed arguments.
n The function statement must be followed by a colon. For more information, see Colons.

The code sample below is a basic function definition. Note that the colon is entered after the function
name and parentheses. This colon defines that everything after that line that is indented is part of the
function. Indentation is equally important, and is discussed in the Indentations section.

def example_function():
print("I am a function!")

Function with arguments
This sample shows how to define a function and then how to call the function to perform an operation
and return a value.

n Line 1: Define the function and define two arguments: x and y.
n Line 2: Define the variable that holds the sum of the arguments as sum_val.
n Line 3: Define a phrase that will be printed to the terminal including sum_val .
n Line 4: The function returns the value of its own variable sum_val. A returned value can be

used and stored outside of the function.
n Line 6: Define the value of the variable global_sum to be the value returned by the function

MicroPython syntax Functions

Digi MicroPython Programming Guide 18

defined in line 1: addition_function(3,4), which is equal to the returned variable sum_val.
n Line 7: Define that a phrase that includes global_sum is printed to the terminal.

def addition_function(x,y):
sum_val = x + y
print("value of sum (x+y): %d" % sum_val)
return sum_val

global_sum = addition_function(3,4)
print("Value of global_sum: %d" % global_sum)

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Errors and exceptions

If something goes wrong during compilation or during execution of code you have entered, you may
get an error. The type of error that occurred and the line number that caused the error will print to
the terminal. Errors can happen for many reasons, such as syntax errors, name errors (which
generally means the variable or function you are referencing is not available), or other more specific
errors.

Note Some exceptions have Error in their name and others have Exception.

Common types of errors include:

Syntax error 20
Name error 20
OSError 21
Socket errors 21

Digi MicroPython Programming Guide 19

Errors and exceptions Syntax error

Digi MicroPython Programming Guide 20

Syntax error
A syntax error occurs when a MicroPython code statement has the wrong syntax.

Example
In this example, the syntax is incorrect. A colon is missing after the word "True".

if True print("Condition is true!")

When you press Enter to run the code it generates the following Exception describing the error
(SyntaxError) and the execution path that led to it (line 1 of the code you entered).

Traceback (most recent call last):
File "<stdin>", line 1

SyntaxError: invalid syntax

The correct code syntax is:

if True: print("Condition is true!")

Name error
A name error is generated when a name of an item, such as a variable or function, cannot be found.
This can occur when:

n You typed the name into the code incorrectly.
n You are referencing a name that was never created.
n The name is defined, but is not in scope when you reference it. For example, if you defined the

name in function A, but are referencing the name in function B.

Referencing a name that was not created
In this example, the name deviation_factor was not created. If you reference this name in the code, a
NameError occurs in line 4, as the code references the deviation_factor name, which was not
created.

print("Assigning value to x...")
x = 17
print("Adding deviation_factor to x...")
x = x + deviation_factor

Referencing a name from one function that was created in a
different function
In this example, a variable is created in the example_func. When you run the code, the NameError
references line 8, where the code tries to print local_variable. The variable was created inside the
function example_func, and the scope of that variable, meaning where it can be accessed, is in that
function. The code references local_variable outside of that function.

def example_func():
print("Entering example function...")
local_variable = "I'm a variable inside this function"

Errors and exceptions OSError

Digi MicroPython Programming Guide 21

print(local_variable)

example_func()
print(local_variable)

OSError
MicroPython returns an OSError when a function returns a system-related error.
For example, if you try to send a message on a Zigbee network:

import xbee

xbee.transmit(xbee.ADDR_COORDINATOR, 'Hello!')

This code assumes that the device is associated to a network and able to send and receive data.
If the device is not associated with a network, it produces an OS error:
OSError: [Errno 7107] ENOTCONN.

Socket errors
Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

This following socket errors may occur.

ENOTCONN: Time out error
If a socket stays idle too long, it will time out and disconnect. Attempting to send data over a socket
that has timed out produces the OSError ENOTCONN, meaning "Error, not connected." If this
happens, perform another connect() call on the socket to be able to send data again.

ENFILE: No sockets are available
The socket.socket() or socket.connect() method returns an OSError (ENFILE) exception if no sockets
are available. If you are already using all of the available sockets, this error may occur in the few
seconds between calling socket.close() to close a socket, and when the socket is completely closed
and returned to the socket pool.
You can use the following methods to close sockets andmake more sockets available:

n Close abandoned sockets: Initiate garbage collection (gc.collect()) to close any abandoned
MicroPython sockets. For example, an abandoned socket could occur if a socket was created in
a function but not returned. For information about the gc module, see the MicroPython
garbage collection documentation.

n Close all allocated sockets: Press Ctrl+D to perform a soft reset of the MicroPython REPL to
close all allocated sockets and return them to the socket pool.

ENXIO: No such device or address
OSError(ENXIO) is returned when DNS lookups fail from calling usocket.getaddrinfo().

http://docs.micropython.org/en/latest/pyboard/library/gc.html
http://docs.micropython.org/en/latest/pyboard/library/gc.html

Keyboard shortcuts

This section includes keyboard shortcuts you can use to make coding with MicroPython easier.

Keyboard shortcuts 23
Select a previously typed statement 23

Digi MicroPython Programming Guide 22

Keyboard shortcuts Keyboard shortcuts

Digi MicroPython Programming Guide 23

Keyboard shortcuts
XCTU version 6.3.6.2 and higher works when the REPL is enabled. The MicroPython Terminal tool
allows you to communicate with the MicroPython stack of your device through the serial interface.
The MicroPython Terminal tool in XCTU supports the following control characters:
Ctrl+A: Enter raw REPL mode. This is like a permanent paste mode, except that characters are not
echoed back.
Ctrl+B: Print the MicroPython banner. Leave raw mode and return to the regular REPL (also known as
friendly REPL). Reprints the MicroPython banner followed by a REPL prompt.
Ctrl+C: Regain control of the terminal. Interrupt the currently running program.
Ctrl+D: Reboot the MicroPython REPL. Soft-reset MicroPython, clears the heap.
Ctrl+E: Enter paste mode. Does not auto-indent and compiles pasted code all at once before
execution. Uses a REPL prompt of ===. Use Ctrl-D to compile uploaded code, or Ctrl-C to abort.
Ctrl+F: Upload code to flash. Uses a REPL prompt of ^^^. Use Ctrl-D to compile uploaded code, or Ctrl-
C to abort.
Ctrl+R: Run code in flash. Run code compiled in flash.

Note If PS is set to 1, code in flash automatically runs once at startup. Use Ctrl-R to re-run it.

Select a previously typed statement
You can use the UP and DOWN arrows on the keyboard to display a previously typed statement at the
current MicroPython prompt.

Note This shortcut does not work: (1) while in paste mode (Ctrl-E) or on any code entered while in
paste mode and (2) while in flash uploadmode.

Arrow keys work to scroll back through previous commands, and to edit the current command. Some
terminal emulators (like CoolTerm) might not work with scrollback.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type print("statement 1") and press Enter.
3. At the MicroPython >>> prompt, type print("statement 2") and press Enter.
4. At the MicroPython >>> prompt, type print("statement 3") and press Enter.

5. At the MicroPython >>> prompt, press the UP arrow key on the keyboard. The most recently
typed statement displays at the prompt. In this example, the statement print("statement 3")
displays.

6. You can press the UP arrow key on the keyboard to display the next most recently type
statement, or press the DOWN arrow key on the keyboard to return the previously selected
statement. Continue this process until the statement you want to use displays at the
MicroPython >>> prompt. Use the Left and Right arrow keys and Backspace to make edits to
the previous statement if desired.

7. Press Enter to execute the displayed statement.

Differences between MicroPython and other
programming languages

You may have experience coding in another language, such as C or Java. You should be aware of the
coding differences between other languages and MicroPython.

Memory management 25
Variable types 25
Syntax 25

Digi MicroPython Programming Guide 24

Differences between MicroPython and other programming languages Memory management

Digi MicroPython Programming Guide 25

Memory management
In C, memory has to be allocated by the user for a variable or object before it can be used.
For a variable in C, this is done by a declaration statement as shown in the code below. The first 2
lines create a floating-point (decimal-valued real number) type variable named salary and an integer
named x. The last 2 lines assign values to each of those variables.

float salary;
int x;

x = 9;
salary = 3.0 + x;

In MicroPython, a variable does not need to be declared before it can be used. For example, the
MicroPython code shown below does the same thing as the C code shown in the example above. Each
line does multiple things: creates the variable (the name), assigns it a type based on the assigned
value, determines the space it needs in memory and allocates that space, and then assigns the value
to it.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

x = 9
salary = x + 3.0

Variable types
In C, variables are "statically typed", meaning they are a certain type when they are created, and the
type does not change. This also means the variable can only hold data appropriate for the type.
In the C code sample shown below, an integer type variable named my_variable is created. An
integer type variable can only hold integer values and the amount of memory allocated to this variable
for storing its value is a fixed size- 4 bytes, limiting the range of values to -2,147,483,648 to
2,147,483,647 for a signed integer.

int my_variable;
my_variable = 32;

In MicroPython, variables are dynamically (or automatically) assigned a variable type when the user
assigns a value to the variable. In the code shown below, the variable big_number is assigned an
integer type, allocated the appropriate amount of memory, and the value stored after the user
assigns a value to the variable.

big_number = 99999999999999999999

If a user changes the value of the variable to a text string, MicroPython stores the string and
automatically changes the variable type to string.

big_number = "This is a really big number!"

Syntax
Syntax refers to rules that you must follow when programming. The following sections explain the
differences in syntax between MicroPython and other programming languages.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Differences between MicroPython and other programming languages Syntax

Digi MicroPython Programming Guide 26

Curly braces and indentation
In C, a function or conditional statement is enclosed by curly braces, as shown in the code sample
below.

void action1(void) {
printf("Function action1\n");

}

void action2(void) {
printf("Function action2\n");

}

if condition {
action1();

}
else {

action2();
}

In MicroPython, only a colon is required. Any statements that are part of the function must be
indented. The C code sample shown above would be coded in MicroPython as shown below. After the
function definitions and conditionals, the code to be executed is indented to make it a part of that
block. Indentation is used in MicroPython to tell the compiler which lines are members of a certain
structure.

def action1():
print("Function action1")

def action2():
print("Function action2")

if condition:
action1()

else:
action2()

In C, all of the instructions to be executed for the function some_function() are contained within the
curly braces. Most programmers indent all the instructions within the function for readability, but this
is not required for the code to work.

void some_function(void) {
int x;
x = 7;
x = x + 1;
printf("Incremented x!\n");
x = x + 2;
printf("Incremented x by 2!\n");

}

In MicroPython, indentation is required to tell the compiler what lines of code are to be executed for
the function some_function(), as shown in the example below.

Differences between MicroPython and other programming languages Syntax

Digi MicroPython Programming Guide 27

def some_function():
x = 7
x = x + 1
print("Incremented x!")
x = x + 2
print("Incremented x by 2!")

When nesting conditions and functions, C relies on curly braces, as shown in the example below. Each
level of code is indented to make it more readable, but it is not required for the code to run.

void some_other_function(void) {
if (condition) {

do_something();
}

}

In MicroPython, indentation is the only thing telling the compiler what instructions belong to what
function or condition. The nested C code example shown above is coded in MicroPython in the example
below:

def some_other_function():
if condition:

do_something()

Semicolons
Statements in C are followed by a semicolon, as shown in the example below.

int x;
x = 7 + 3;
action1();

In MicroPython, statements are ended by starting a new line. A special symbol or character is not
needed.

x = 7 + 3
action1()

Increment operator
C and Java have an "increment" operator, which lets the user increase the value of a variable by 1.
See the following excample:

int x;
x = 1;
x++; // x is now 2
x++; // x is now 3

MicroPython does not have an "increment" operator. To do the equivalent in MicroPython the variable
would have to have 1 explicitly added to it, or use the += operator.
The += operator states that a variable equals itself plus a value. So, in the MicroPython code block
below, line 3 is basically shorthand for line 2. They both do the same operation: set x equal to x plus 1.

x = 1
x = x + 1 # x is now 2
x += 1 # x is now 3

Differences between MicroPython and other programming languages Syntax

Digi MicroPython Programming Guide 28

Logical operators
In C, the logical operators AND, OR, and NOT are represented by &&, ||, and ! respectively. The C code
block below shows the logical operators in use.

// if it's sunny out, AND NOT cold outside
if (sunny_outside && !cold_outside) {

// if you have a towel AND an umbrella
if (have_towel && have_umbrella) {

// if you have a bike OR a car
if (have_bike || have_car) {

// then you will go to the beach
go_to_beach();

}
}

}

In MicroPython, the operators for AND, OR, and NOT are simply and, or, and not, which is much more
intuitive. The MicroPython code shown below has the same function as the C code shown above.

if sunny_outside and not cold_outside:
if have_towel and have_umbrella:

if have_bike or have_car:
go_to_beach()

Power management with MicroPython

Sleeping with AT commands: XBee Cellular Modem 30
Initiate sleep from MicroPython 30
Sleeping with AT commands: XBee3 Zigbee RF Module 32

Digi MicroPython Programming Guide 29

Power management with MicroPython Sleeping with AT commands: XBee Cellular Modem

Digi MicroPython Programming Guide 30

Sleeping with AT commands: XBee Cellular Modem
Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

When the XBee Cellular Modem enters deep sleepmode, any MicroPython code currently executing is
suspended until the device comes out of sleep. When the XBee Cellular Modem comes out of sleep
mode, MicroPython execution continues where it left off.
If you use SM sleep, MicroPython can use XBee().wake_lock to force the device to stay awake during
critical operations, for example, uploading data to a web server. The following example shows how to
use XBee().wake_lock:

import xbee
xb = xbee.XBee()

do things interruptable by sleep

with xb.wake_lock:
do important things

back to things that are safe to interrupt

Upon entering sleepmode, the XBee Cellular Modem closes any active TCP/UDP connections and
turns off the cellular component. As a result, any sockets that were opened in MicroPython prior to
sleep report as no longer being connected. This behavior appears the same as a typical socket
disconnection event.
The following is a summary of the behavior to expect from the main socket methods:

n socket.send raises OSError: ENOTCONN
n socket.recv returns an empty string, the traditional end-of-file return value

Note As of the x09 firmware, all time-related APIs include the time spent in sleep. Prior firmware
versions paused the millisecond timer used by time.sleep(), time.sleep_ms() and time.time(), so
having a 15-second SM (Sleep Mode)-triggered sleep occur during a MicroPython time.sleep(30)
would result in a 45 second delay in execution. With the x09 firmware, it only delays for 30 seconds.

Initiate sleep from MicroPython
Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

If you disable sleepmodes by setting SM (Sleep Mode) to 0, you can use XBee().sleep_now() and
XBee().wake_reason() to control when the module sleeps. When selecting sleep and wake times on
the XBee Cellular Modem, take into consideration the time it takes to close network connections and
shut down the cellular connection before sleeping, and then to restore the connection when waking
back up.

sleep_now(timeout_ms, pin_wake=False)

Returns the number of milliseconds elapsed. If pin_wake is set to True, the device only goes to sleep
if DIO8 is pulled high. The device wakes up early if DIO8 goes low before timeout_ms elapsed.
Throws an EALREADY OSError exception if SM is already configured for sleep (set to something other
than 0).

Power management with MicroPython Initiate sleep from MicroPython

Digi MicroPython Programming Guide 31

wake_reason()

Returns either xbee.RTC_WAKE if the full timeout_ms elapsed, or xbee.PIN_WAKE when enabled
and DIO8 woke the device early.
The following example shows power management with MicroPython:

Sample showing MicroPython sleeping to conserve power. Only initiates
cellular connection if there's been an alarm condition or it's been
an hour since the last connection.
from machine import Pin
import network
import time
import xbee

alarm_enabled = False
alarm = False
last_upload = 0

def read_sensors():
add code here to actually read sensors
might set the alarm for unusual readings
print("read sensors")

def set_alarm_condition():
global alarm
print("alarm!")
alarm = True

def send_data():
global alarm, last_upload
add code here to connect to a server to upload sensor readings
print("sent data and reported any alarms")
alarm = False
last_upload = time.ticks_ms()

def time_for_upload():
global alarm, last_upload

upload if there's been an alarm, or it's been an hour since last upload
return alarm or (time.ticks_diff(time.ticks_ms(), last_upload) > 60 * 60 *

1000)

def upload_then_sleep():
c.active(True) # establish cellular connection
print("waiting for connection...")
while not c.isconnected():

time.sleep(1) # wait for cellular connection
send_data()
c.active(False) # shut down cellular connection

c = network.Cellular()
x = xbee.XBee()

x.atcmd('SM', 0) # make sure MicroPython fully controls sleep

must configure DIO8 as an input with pullup if we want to read and use it
for waking
dio8 = Pin('D8', Pin.IN, Pin.PULL_UP)

Power management with MicroPython Sleeping with AT commands: XBee3 Zigbee RF Module

Digi MicroPython Programming Guide 32

upload data then put module to sleep
upload_then_sleep()

while True:
read_sensors()
if time_for_upload():

upload_then_sleep();

if not alarm_enabled and dio8():
print("DIO8 high, re-enabling alarm")
alarm_enabled = True

sleep for 60 seconds, wake early if DIO8 is low
print("sleeping for 60 seconds")
sleep_ms = x.sleep_now(60000, alarm_enabled)

print("slept for %u ms" % sleep_ms)
if x.wake_reason() is xbee.PIN_WAKE:

print("woke early on DIO8 low")
set_alarm_condition()
alarm_enabled = False

Sleeping with AT commands: XBee3 Zigbee RF Module
Note This section only applies to the XBee3 Zigbee RF Module. See Which features apply to my device?
for a list of the supported features.

When the XBee3 Zigbee RF Module enters deep sleepmode, any MicroPython code currently executing
is suspended until the device comes out of sleep. When the XBee3 Zigbee RF Module comes out of
sleepmode, MicroPython execution continues where it left off.

Access the primary UART

How to use the primary UART 34
Example 34

Digi MicroPython Programming Guide 33

Access the primary UART How to use the primary UART

Digi MicroPython Programming Guide 34

How to use the primary UART
MicroPython provides access to the primary UART via sys.stdin (see sys.stdin limitations) and
sys.stdout (and sys.stderr as an alias to sys.stdout). Unlike Python3, MicroPython does not allow
overriding stdin, stdout and stderr with other stream objects.
sys.stdin sys.stdin supports standard streammethods read and readline in text mode, converting
carriage return (\r) to newline (\n).

Note Do not use the stdin methods readlines or readinto because they will be removed in future
firmware.

Use sys.stdin.buffer (instead of sys.stdin) for binary mode without any line ending conversions. The
read() method takes a single, optional parameter of the number of bytes to read. For a positive value,
read() blocks until receiving that many bytes from the standard streammethods primary UART. For
non-blocking, call read() without the parameter (or with a negative value) and it returns whatever
characters are available or None if no bytes are waiting.
sys.stdout supports the write() method in text mode, sending an additional carriage return (\r)
before each newline (\n). Use sys.stdout.buffer (instead of sys.stdout) for binary mode without any
line ending conversions. The write() method buffers its output, and can return before sending all bytes
out on the UART.

sys.stdin limitations
Note that sys.stdin provides access to a filtered input stream with the following limitations:

n Only works as long as ATAP = 4.
n You can only configure the primary serial port via AT commands (for example ATBD to set the

baud rate) and not from MicroPython.
n Receiving a Ctrl-C character generates a KeyboardInterrupt.

l You can change the interrupt character using micropython.kbd_intr(ch) where ch is the
new character to use (3 corresponds to Ctrl-C) or -1 to disable the keyboard interrupt
entirely.

l MicroPython always resets the keyboard interrupt to Ctrl-C at the start of each REPL line,
before executing code entered via paste mode, and when executing compiled code at
startup or via Ctrl-R.

n The escape sequence (configured with ATCC, +++ by default) protected by a guard time
(configured with ATGT, 1 second by default) of no data before and after the escape sequence
will always enter Commandmode.
l Escape sequence handling can cause delays when reading from sys.stdin.
l You can send ATPY^ in Commandmode to force a KeyboardInterrupt, even if it was

disabled via micropython.kbd_intr(-1).

Example
Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

This sample code is handy for debugging the secondary UART. It simply relays data between the
primary and secondary UARTs.

Access the primary UART Example

Digi MicroPython Programming Guide 35

from machine import UART
import sys, time

def uart_init():
u = UART(1)
u.write('Testing from XBee\n')
return u

def uart_relay(u):
while True:

uart_data = u.read(-1)
if uart_data:

sys.stdout.buffer.write(uart_data)
stdin_data = sys.stdin.buffer.read(-1)
if stdin_data:

u.write(stdin_data)

time.sleep_ms(5)

u = uart_init()
uart_relay(u)

You only need to call uart_init() once.
Call uart_relay() to pass data between the UARTs.
Send Ctrl-C to exit relay mode.
When done, call u.close() to close the secondary UART.

REPL (Read-Evaluate-Print Loop) examples

A REPL is a language shell that accepts user input, evaluates the input, and then returns a result.
This section contains examples of specific MicroPython REPL commands on the XBee device. For
information about MicroPython REPL rules in general, see
http://docs.micropython.org/en/latest/pyboard/reference/repl.html.

Ctrl+A: Enter raw REPL mode 37
Ctrl+B: Print the MicroPython banner 37
Ctrl+C: Regain control of the terminal 39
Ctrl+D: Reboot the MicroPython REPL 39
Ctrl+E: Enter paste mode 40
Ctrl+F: Upload code to flash 41
Flash memory and automatic code execution 43
Perform a soft-reset or reboot 46

Digi MicroPython Programming Guide 36

http://docs.micropython.org/en/latest/pyboard/reference/repl.html

REPL (Read-Evaluate-Print Loop) examples Ctrl+A: Enter raw REPL mode

Digi MicroPython Programming Guide 37

Ctrl+A: Enter raw REPL mode
Use this command to enter raw REPLmode, which enables you to execute pasted code. This acts like
a paste mode, but the characters are not echoed back.
This command is used for machine-to-machine communication.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the code you want to paste into the XBee device. For example:

print("Hello world")

3. Press Ctrl+A to enter raw REPLmode.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>
raw REPL; Ctrl-B to exit
>

4. Right-click at the MicroPython > prompt and select the Paste option.
5. Press Ctrl+D to save the paste action. An "OK" confirmation and the pasted code displays in

the line. The code is saved to the XBee device and immediately executed.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>> raw REPL; Ctrl-B to exit
>OKHello world
>

6. Press Ctrl+B to exit raw REPLmode.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>> raw REPL; Ctrl-B to exit
>OKHello world
>
MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>

Ctrl+B: Print the MicroPython banner
Use this command to perform one of the following:

n If MicroPython is in raw REPLmode, press Ctrl+B to return to the regular REPL and print the
MicroPython banner.

n If MicroPython is in the regular REPLmode, press Ctrl+B to print the banner.

The banner displays the MicroPython version you are using and the build date for that version.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

REPL (Read-Evaluate-Print Loop) examples Ctrl+B: Print the MicroPython banner

Digi MicroPython Programming Guide 38

Pressing Ctrl+B does not reboot the REPL. If you need start a fresh REPL session, use the Ctrl+D:
Reboot the MicroPython REPLcommand to reboot the REPL.

Print the banner
This example shows how to print the banner.

1. Access the MicroPython environment.
2. Press Ctrl+B to print the banner.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>

Print the banner and verify that the memory was not wiped
In this example, a variable "a" is assigned the value "test". When you press Ctrl+B, the banner is
printed.
You can verify that the memory was not wiped by entering the variable "a" and seeing that the value
"test" is the output.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type a = "test", then press Enter. This statement assigns the

value "test" to the variable "a".
3. At the MicroPython >>> prompt, type a, then press Enter. The value assigned to the variable

displays.
4. Press Ctrl+B to print the banner.
5. At the MicroPython >>> prompt, type a and press Enter. The assigned value for the variable is

returned.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

REPL (Read-Evaluate-Print Loop) examples Ctrl+C: Regain control of the terminal

Digi MicroPython Programming Guide 39

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>> a = "test"
>>> a
'test'
>>> <Ctrl-B>
MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>> a
'test'
>>>

Ctrl+C: Regain control of the terminal
Use this command to interrupt the currently running program and regain control of the terminal. This
is useful if running the code is taking longer than expected, such as if the code has an incorrectly
coded never-ending loop.
In this example the code has an infinite loop. The code stops the code execution.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the code you want to paste. This example uses the following code:

while True:
pass # This statement means "do nothing"

3. At the MicroPython >>> prompt, type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and the select the Paste option. The code appears
in the terminal and each line is numbered, followed by ===. For example line 1 starts with 1===.

5. Press Ctrl+D to accept and run the pasted code. The code will run continuously until you cancel
it.

6. Press Ctrl+C to stop the code execution. A KeyboardInterrupt exception message prints to
the screen.

7. A MicroPython >>> prompt displays on a new line.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>
paste mode; Ctrl-C to cancel, Ctrl-D to finish

1=== while True:
2=== pass # This statement means "do nothing"

Traceback (most recent call last):
File "<stdin>", line 2, in <module>

KeyboardInterrupt:
>>>

Ctrl+D: Reboot the MicroPython REPL
Use this command to reboot the REPL and clear any variable and function definitions.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

REPL (Read-Evaluate-Print Loop) examples Ctrl+E: Enter paste mode

Digi MicroPython Programming Guide 40

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type a = "test", then press Enter. This statement assigns the

value "test" to the variable "a".
3. At the MicroPython >>> prompt, type a, then press Enter. The value assigned to the variable

displays.
4. Press Ctrl+D to reboot the REPL. The phrase "soft reboot" followed by the MicroPython banner

prints.
5. At the MicroPython >>> prompt, type the variable "a" (no quotes) and press Enter. Since the

memory was wiped, the variable is not found and the error NameError: name not defined
prints in the output.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>> a = 'test'
>>> a
'test'
>>>
soft reboot

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>> a
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name not defined

Ctrl+E: Enter paste mode
Use this REPL command to enter paste mode. This enables you to paste a block of code into the
terminal, rather than having to type in lines of code.

Note Paste mode evaluates each line in the pasted code block in order, as if the code had been typed
into the REPL.

Paste one line of code
This example uses the following code to show how to copy one line of code and paste it into the
MicroPython Terminal.

1. Access the MicroPython environment.
2. Copy the code you want to paste. This example uses the following code:

print("Hello world")

REPL (Read-Evaluate-Print Loop) examples Ctrl+F: Upload code to flash

Digi MicroPython Programming Guide 41

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>
paste mode; Ctrl-C to cancel, Ctrl-D to finish

1===

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. The code appears in the terminal and each line is numbered, followed by ===. For example line

1 starts with 1===.
6. Press Ctrl+D to complete the paste process and run the pasted code.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>
paste mode; Ctrl-C to cancel, Ctrl-D to finish

1=== print("Hello world")
Hello world

Paste a code segment
This example uses the following code to show how to copy one line of code and paste it into the
MicroPython Terminal.

1. Access the MicroPython environment.
2. Copy the code you want to paste. This example uses the following code:

for x in range(10):
print("Current number: %d" % x)
if (x < 9):

print("Next number will be: %d\n" % (x + 1))
else:

print("This is the last number!")

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. The code appears in the terminal and each line is numbered, followed by ===. For example line

1 starts with 1===.
6. Press Ctrl+D to complete the paste process and run the pasted code. In this example, you

should see 10 statements print to the terminal that state the current number, and what the
next number will be. The numbers are from 0 to 9.

Ctrl+F: Upload code to flash
You can use flash mode to paste a block of code into MicroPython and store it to flash memory. You
can run the stored code at any time from the MicroPython prompt by pressing Ctrl+R.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

REPL (Read-Evaluate-Print Loop) examples Ctrl+F: Upload code to flash

Digi MicroPython Programming Guide 42

When the code is uploaded to the flash memory, the MicroPython volatile memory (RAM) is cleared of
any previously executed code. The uploaded code is saved on the XBee device. This means that only
the last code saved to the flash memory is available.
You can choose to automatically run the code currently stored in the flash memory when the XBee
device boots up.

Upload code to flash memory
Use this command to upload code to the flash compile mode.
Any code uploaded in the flash memory can be set to run automatically when the XBee Cellular
Modem boots up. You can also press Ctrl+R to re-run the compiled code at any time.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the code you want to paste into the XBee device. For example:

print("Hello world")

3. Press Ctrl+F.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>
flash compile mode; Ctrl-C to cancel, Ctrl-D to finish

1^^^

4. At the MicroPython 1^^^ prompt, right-click and select the Paste option.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>
flash compile mode; Ctrl-C to cancel, Ctrl-D to finish

1^^^ print("Hello world")

5. Press Ctrl+D to finish. The code is compiled and stored in flash memory.

Compiling 123 bytes of code...
Used 0/150 QSTR entries.
Compiled 123 bytes of code to 188/7544 bytes of flash.
Automatically run this code at startup [Y/n]?

6. You can choose whether to have the code stored in the flash memory automatically run the
next time the XBee device is started. Press Enter to leave the setting unchanged (the default
value shown as uppercase).

o Y: Press Y to automatically run the code stored in flash memory upon startup. This sets
the PS command to 1. Note that this example only works on startup if you have a
terminal open on that serial port and the AP command is set to 4.

o N: Press N to ensure that the code stored in flash memory is not run the next time the
XBee device is started. This sets the PS command to 0.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

REPL (Read-Evaluate-Print Loop) examples Flash memory and automatic code execution

Digi MicroPython Programming Guide 43

Erase the code stored in flash memory
You can erase the code stored in flash memory using one of the following methods.

Note This example assumes you have code stored to flash memory. For information about how to
store code to flash memory, see Upload code to flash memory.

Ctrl+D

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, press Ctrl+F to enter flash mode. Do not enter or paste any

code.
3. At the MicroPython >>> prompt, press Ctrl+D to complete the process. A process message

displays:

Erasing stored code...

4. When the process is complete the MicroPython >>> prompt displays in the terminal.

ATPYD command
The ATPYD command erases stored code and performs a soft reboot. For instructions, see the
MicroPython commands section in the appropriate user guide.

Flash memory and automatic code execution
Flash memory is referred to as "non-volatile" memory, as it retains whatever is stored in it, even
without any power. This allows code stored in the flash memory to be run when you start up the XBee
device.
The sections below explain how to manage code stored in flash memory.

n Run stored code at start-up to flash LEDs (XBee Cellular Modem only)
n Disable code from running at start up
n Enable code to run at start-up

Run stored code at start-up to flash LEDs

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

If you have stored code to the flash memory, you can choose to automatically run this code when the
XBee device boots up.

1. Access the MicroPython environment.
2. Copy the code you want to paste. This example uses the following code, which automatically

blinks the LED lights on the XBIB board every two seconds.

from machine import Pin
import time

dio10 = Pin("P0", Pin.OUT, value=0)

https://www.digi.com/resources/documentation/digidocs/90002219/Default.htm#reference/r_ref_material.htm

REPL (Read-Evaluate-Print Loop) examples Flash memory and automatic code execution

Digi MicroPython Programming Guide 44

while True:
time.sleep(1)
dio10.toggle() # Flash the LED on DIO10 (P0)

3. At the MicroPython >>> prompt, press Crtl+F.
4. At the MicroPython 1^^^ prompt, right-click and select the Paste option.
5. The code appears in the terminal and each line is numbered, followed by ^^^. For example, line

1 starts with 1^^^.
6. Press Ctrl+D to finish.

Compiling 123 bytes of code...
Used 0/150 QSTR entries.
Compiled 123 bytes of code to 188/7544 bytes of flash.
Automatically run this code at startup [Y/n]?

7. Press the Y key to run the code at start-up.
8. You may want to test your code before power cycling the device.
9. Press Ctrl+R to run the code compiled in flash. If it is not working correctly, press Ctrl+C to

interrupt it and upload a new version.
10. Once you are happy with the uploaded code, power down the XBee Cellular Modem.

a. Unplug the USB cable from your computer.
b. Disconnect the power supply from the XBIB board.
c. Wait until the lights on the XBIB board turn off.
d. Reconnect the power. The three LEDs on the XBIB board automatically start turning

ON and OFF every 2 seconds.
11. Connect the USB cable to your computer.
12. Access the MicroPython environment. A MicroPython prompt does not display, as MicroPython

is running the code to blink the LEDs.
13. The terminal seems unresponsive as the code loop executes. Note the three green LEDs to the

right of the USB-B port on the XBIB development board. These LEDs turn ON then OFF every 2
seconds.

14. At the terminal, press Ctrl+C to stop code execution and regain control of the terminal. A
MicroPython prompt displays and the LEDs stop flashing.

Disable code from running at start up
For code that you saved to the flash memory and specified that the code should run at start up, you
can change your choice and choose not to automatically run the code at start up. You can change your
choice without saving the code to the flash memory again.

1. Use Ctrl+F to save code to the flash memory and choose to run it at start up.
2. At the Serial Console, enter Commandmode by sending +++ and receiving an OK response.

3. At the prompt, type ATPS and press Enter. The terminal should echo back 1, since the code in
the flash memory is set to run at start up.

4. At the prompt, type ATPS0 and press Enter. This statement disables automatic code execution
at start up.

REPL (Read-Evaluate-Print Loop) examples Flash memory and automatic code execution

Digi MicroPython Programming Guide 45

5. At the prompt, type ATWR and press Enter. This statement writes the change to the flash
memory.

6. At the prompt, type ATCN and press Enter. This statement exits Commandmode.
7. Disconnect the USB cable from your computer.
8. Close the Serial Console.
9. Disconnect the power from the XBIB board.

10. After the LEDs on the XBIB board have all turned off, reconnect the power to the XBIB board.
11. Connect the USB cable to your computer. Notice that the LEDs do not blink, which verifies that

you have successfully disabled the automatic code execution at start up.

Ctrl+R: Run code in flash
You can use this command to re-run the code in the flash memory.

1. Access the MicroPython environment.
2. Upload code to flash memory.
3. Press Ctrl+R to re-run the code in the flash memory.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>>
Running 76 bytes of stored bytecode...
Hello world

Enable code to run at start-up
For code that you saved to the flash memory and chosen not to run at start up, you can change your
choice and enable the code to automatically run at start up. You can change your choice without
saving the code to the flash memory again.

1. For this example, you need code stored in flash memory that will not automatically run at
start-up. Use Ctrl+F to save code to the flash memory. You can either:

n Press N and choose not to run it at start up.
n Press Y to run the code in flash memory at start-up. If you chose Yes, for this example

you should Disable code from running at start up.

Remember that in this example, when MicroPython is not set to automatically run at start-up,
the LEDs do not blink on module start-up.

2. At the Serial Console, enter Commandmode by sending +++ and receiving an OK response.

3. At the prompt, type ATPS and press Enter. The terminal should echo back 0, since the code in
the flash memory is not set to run at start-up.

4. At the prompt, type ATPS1 and press Enter. This statement enables automatic code execution
at start up.

5. At the prompt, type ATWR and press Enter. This statement writes the change from the
previous statement to the flash memory.

6. At the prompt, type ATCN and press Enter. This statement exits commandmode.
7. Press the Reset button on the XBIB board.

REPL (Read-Evaluate-Print Loop) examples Perform a soft-reset or reboot

Digi MicroPython Programming Guide 46

8. Notice that the LEDs blink ON and OFF, which verifies that you have successfully enabled the
automatic code execution at start up.

Perform a soft-reset or reboot
If you want to soft-reset the REPL you can press Ctrl+D in the REPL, or run machine.soft_reset() to
force a soft reset from code.
If you want to reboot the entire XBee device, run xbee.atcmd('FR').

Access file system in MicroPython

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

Directory and file names follow the rules in Paths.

Modify file system contents 48
Access data in files 50
File object methods 50
Import modules from file system 51
Reload a module 51
Compiled MicroPython files 52

Digi MicroPython Programming Guide 47

https://www.digi.com/resources/documentation/Digidocs/90001525/Default.htm#Reference/r_paths.htm

Access file system in MicroPython Modify file system contents

Digi MicroPython Programming Guide 48

Modify file system contents
The uos module contains the following methods to interact with the file system.

uos.chdir(dir)
Change the current working directory.

uos.getcwd()
Get the current working directory.

Note MicroPython maintains a separate working directory from the FS (File System) command
processor.

uos.ilistdir([dir])
This function returns an iterator which then yields tuples corresponding to the entries in the directory
that it is listing. With no argument it lists the current directory, otherwise it lists the directory given by
dir. The tuples have the form (name, type, inode, size):

n name: A string (or bytes if dir is a bytes object) and it is the name of the entry.
n type: An integer that specifies the type of the entry, with 0x4000 for directories and 0x8000 for

regular files.
n inode: An integer corresponding to the inode of the file. On XBee devices, set to 0 for regular

files and directories and -1 for secure files.
n size: An integer representing the size of the file or -1 if unknown. Its meaning is currently

undefined for directory entries.

uos.listdir([dir])
Returns a list of files in the given directory. With no argument it uses the current working directory (.).

uos.mkdir(dir)
Create a new directory.

uos.remove(file)
Remove a file.

uos.rmdir(dir)
Remove a directory. Fails if dir is not empty.

uos.rename(old_path, new_path)
Rename or move a file or directory. Fails if new_path already exists.

Access file system in MicroPython Modify file system contents

Digi MicroPython Programming Guide 49

uos.replace(old_path, new_path)
Replace a file or directory (new_path) with another (old_path).

uos.sync()
Sync all file systems.

uos.compile(source_file, mpy_file=None)
This is an XBee extension to uos. Compile Python source code in source_file and store in a file with an
.mpy extension. Default is to remove the .py extension from source_file and append .mpy to
generate mpy_file. See Import modules from file system for details on using .mpy files.
Compilation involves three steps: parsing, compiling and saving to the file system. MicroPython prints
information about heap usage before each step so you can monitor heap requirements for a device,
and consider splitting it into two (or more) modules or compiling with the MicroPython cross compiler
(mpy-cross) on your computer instead of compiling on the XBee device.

>>> uos.compile('urequests.py')
stack: 644 out of 3584
GC: total: 32000, used: 688, free: 31312
No. of 1-blocks: 12, 2-blocks: 7, max blk sz: 8, max free sz: 1716
Parsing urequests.py...
stack: 644 out of 3584
GC: total: 32000, used: 8000, free: 24000
No. of 1-blocks: 20, 2-blocks: 12, max blk sz: 88, max free sz: 1415
Compiling...
stack: 644 out of 3584
GC: total: 32000, used: 3872, free: 28128
No. of 1-blocks: 45, 2-blocks: 35, max blk sz: 42, max free sz: 1254
Saving urequests.mpy...
>>> list(uos.ilistdir())
[('urequests.py', 32768, 0, 3407), ('urequests.mpy', 32768, 0, 2657)]

uos.format()
This is an XBee extension to uos. Reformats the SPI flash and creates the default directory structure.

uos.hash([secure_file])
This is an XBee extension to uos. Returns a 32-byte bytes object with the sha256 hash digest of a
secure file. You can use this value to verify that a secure file matches an unencrypted copy of the file.
See FS HASH filename for more information on using this digest. If secure_file is not specified, it
returns a string identifying the hash method (sha256). You can convert the 32-byte digest to a 64-
character hexdigest with the following code snippet:

>>> from ubinascii import hexlify
>>> digest = os.hash('cert/client.key')
>>> hexdigest = hexlify(digest)
>>> digest

b'\r\x85\xdbY\x0b\xfd\r\x00\x1aI\x08\xb8\x19\xd3\xb8\xa0\x03f\x85\x0fh\xb9\xc9\x1
f\x92;\xd8\xab\xa2\x0f\xfb\x16'
>>> hexdigest
'0d85db590bfd0d001a4908b819d3b8a00366850f68b9c91f923bd8aba20ffb16'

https://www.digi.com/resources/documentation/Digidocs/90002258/#reference/r_cmd_FS_HASH.htm

Access file system in MicroPython Access data in files

Digi MicroPython Programming Guide 50

Access data in files
The built-in method open() is an alias to uio.open(file, mode='r') which returns a file object—an
uio.FileIO object for binary modes and an uio.TextIOWrapper object for text modes. If the file cannot
be opened, an OSError is raised.
Parameter file is a path-like object giving the path—absolute or relative to the current working
directory—of the file to be opened.
Parameter mode is an optional string that specifies the mode in which the file is opened. It defaults to
'r' which means open for reading in text mode. Other common values are 'w' for writing (truncating
the file if it already exists), 'x' for exclusive creation and 'a' for appending—all writes append to the
end of the file regardless of the current seek position. The available modes are:

Character Meaning

'r' Open for reading (default)

'w' Open for writing, truncating file file

'x' Open for exclusive creation, failing if the file already exists

'a' Open for writing, always appending to the end of the file

'b' Binary mode

't' Text mode (default)

'+' Open a disk file for updating (reading and writing)

'*' (XBee extension) open a secure file for writing

The default mode is 'r'—open for reading text, a synonym of 'rt'. For binary read-write access, the
mode 'w+b' opens and truncates the file to 0 bytes. 'r+b' opens the file without truncation.
Python distinguishes between binary and text I/O. Files opened in binary mode—including 'b' in the
mode argument—return contents as bytes objects without any decoding. In text mode—the default,
or when 't' is included in the mode argument—the contents of the file are returned as str.

File object methods
The following methods interact with file objects.

read(size=-1)
Read up to size bytes from the object and return them. As a convenience, if size is unspecified or -1, all
bytes until end-of-file (EOF) are returned.

readinto(b)
Read bytes into a pre-allocated, writable bytes-like object b, and return the number of bytes read.

readline(size=-1)
Read and return one line from the stream. If size is specified, at most size bytes are read.

Access file system in MicroPython Import modules from file system

Digi MicroPython Programming Guide 51

readlines()
Read and return a list of lines from the stream. MicroPython does not support Python3's hint
parameter.

Note It is already possible to iterate on file objects using for line in file: ... without calling
file.readlines().

write(b)
Write the given bytes-like object, b, to the underlying raw stream, and return the number of bytes
written.

seek(offset, whence=0)

Note Seeking is disabled when writing to secure files.

Change the stream position to the given byte offset. offset is interpreted relative to the position
indicated by whence. The default value for whence is 0 (SEEK_SET). Values for whence are:

n 0 (SEEK_SET) – start of the stream (the default); offset should be zero or positive
n 1 (SEEK_CUR) – current stream position; offset may be negative
n 2 (SEEK_END) – end of the stream; offset is usually negative

Returns the new absolute stream position.

tell()
Return the current stream position.

flush()
Flush the write buffers of the stream if applicable. This does nothing for read-only streams.

close()
Flush and close the stream. This does nothing if the file is already closed.

Import modules from file system
Python code can access code in modules using the builtin import command. When executing the line
import foo, MicroPython goes through each entry in sys.path looking for a module called foo. It first
checks for a package by looking for the file __init__.py in the directory foo. It then checks for a file
foo.py and finally foo.mpy (a pre-compiled Python file) before moving to the next entry in sys.path.
On startup, the XBee device sets its sys.path to a default of ['', '/flash', '/flash/lib'].

Reload a module
If you want to reload a module after uploading a revised source file, use the following method to
discard the old module and re-import from the updated file.

Access file system in MicroPython Compiled MicroPython files

Digi MicroPython Programming Guide 52

Note This is also necessary if the previous import attempt failed due to a syntax error.

import sys
def reload(mod):

mod_name = mod.__name__
del sys.modules[mod_name]
return __import__(mod_name)

Compiled MicroPython files
With the file system, the XBee Cellular Modem supports compiled MicroPython code in the form of
.mpy files. You can convert a .py file to a .mpy file on the XBee device using the uos.compile()
method; see Modify file system contents. The XBee Cellular Modem also supports .mpy files created
with mpy-cross, the MicroPython cross-compiler. You can download mpy-cross for Windows, Linux and
MacOS from the mpy-cross project.

Note You should pass -mno-unicode and -msmall-int-bits=31 to mpy-cross when cross-compiling for
the XBee Cellular Modem.

The benefit of using a .mpy file is that MicroPython can load it to the heap with minimal overhead,
unlike the parsing and compiling process which could require a 32 kB heap to create a 7 kB .mpy file.
Since MicroPython checks for .py files in a given directory before .mpy files, you need to organize your
files so the .mpy comes up first during an import search. One technique is to keep the Python source
in lib/source/ and then compile to an .mpy file in lib/ after uploading new files; for example, with
/flash/lib as the current working directory, uos.compile('source/foo.py', 'foo.mpy').

https://pypi.org/project/mpy-cross/

MicroPython libraries on GitHub

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

On GitHub, we maintain modules and sample code for use on XBee devices with MicroPython. The
code is available at github.com/digidotcom/xbee-micropython. The samples include:

n Secure Sockets Layer (SSL) and Transport Layer Security (TLS). See The ussl module.
n Amazon Web Services (AWS). These samples demonstrate how to connect to AWS IoT and

publish and subscribe to topics using the umqtt.simple module. See Use AWS IoT from
MicroPython.

n File Transfer Protocol (FTP). Micro File Transfer Protocol client.
n MQ Telemetry Transport (MQTT). MQTT client for publish/subscribe. See Publish to a topic.
n Digi Remote Manager. An HTTP client for Digi Remote Manager.

Digi MicroPython Programming Guide 53

https://github.com/digidotcom/xbee-micropython

The ussl module

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

ussl on the XBee Cellular Modem 55
Syntax 55
Sample code 56

Digi MicroPython Programming Guide 54

The ussl module ussl on the XBee Cellular Modem

Digi MicroPython Programming Guide 55

ussl on the XBee Cellular Modem
The XBee Cellular Modem's implementation of MicroPython provides a stripped-down version of
Python3's ssl module using the name ussl. It consists of a single method, wrap_socket(), which you
can use to authenticate servers—ensuring they have a certificate signed by given CA—or provide
client authentication via a client certificate and key to the server. Some important differences from
wrap_socket() on Python3 are:

n You can only wrap a socket created with protocol IPPROTO_SEC. Python3 uses IPPROTO_TCP.
n You can only wrap a socket before calling the connect() method. Python3 allows for opening a

socket, performing unencrypted communications, and then upgrading the connection to use
TLS, for example, via the STARTTLS command supported in some protocols.

n In Python3, wrap_socket() creates a new ssl.SSLSocket object and the original socket.socket
remains intact. MicroPython on the XBee Cellular Modem converts the original socket.socket
to a ussl.SSLSocket with the same methods.

n Python3 allows for including the key with the device's certificate in a single file for the certfile
keyword parameter, but MicroPython on the XBee Cellular Modem requires separate files for
the certificate and key.

n If specifying a device certificate, you must also provide a ca_certs file.

Syntax

Usage
ussl.wrap_socket(sock, keyfile=None, certfile=None, ca_certs=None, server_side=False, server_
hostname=None)

n sock: Socket object created with IPPROTO_SEC and not already wrapped.
n keyfile: Name of a file containing the private key for certfile (also stored as a Base64 PEM file).
n certfile: Name of a file containing this device's public X.509 certificate as a Base64 PEM file.

When specifying certfile, you must also specify keyfile and ca_certs.
n ca_certs: Name of a file containing a single public X.509 certificate of the trusted certificate

authority (CA) for the remote host. Connections with remote devices only succeed if they have
a certificate signed by the CA listed in ca_certs. Unlike Python3, which supports multiple
certificates in ca_certs, MicroPython on the XBee Cellular Modem only supports a single
certificate in this file. In order to authenticate a server not participating in a PKI (using CAs) the
server must present a self-signed certificate. That certificate can be used in the ca_certs field
to authenticate that single server.

n server_side: currently ignored.
n server_hostname: reserved for future support of Server Name Indication (SNI).

wrap_socket() returns the wrapped socket object as a SSLSocket object. Filenames are relative to
MicroPython's current working directory, which defaults to /flash and changes via the uos.chdir()
method. Use an absolute path like /flash/cert/server.pem to ignore the current working directory
when resolving the filename.

The ussl module Sample code

Digi MicroPython Programming Guide 56

Sample code
This sample code makes use of a CloudFlare demonstration page using the hostname auth.pizza. You
can read about it on this page. The steps to connect with the client certificate and retrieve the JSON
response are:

1. Download the pizza.pem file from this page, (download link) and split it into two separate files:
pizza-client.pem for the public certificate and pizza-client.key for the secret key.

Note You can download a zip file of the following three certificate files here and use them instead of
copying and pasting from this example.
Use Ctrl+E: Enter paste mode to make copying and pasting easier.

pizza-client.pem
-----BEGIN CERTIFICATE-----

MIIEBDCCAuygAwIBAgIUBz8Dd38XnixDcZrowRqrdueQ7sUwDQYJKoZIhvcNAQEL
BQAwdjELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3JuaWExFjAUBgNVBAcT
DVNhbiBGcmFuY2lzY28xEzARBgNVBAoTCkNsb3VkRmxhcmUxJTAjBgNVBAsMHENs
b3VkRmxhcmUgVGVzdCBDbGllbnQgQ0EgIzEwIBcNMTcwMzIyMTYzMjAwWhgPMjEx
NzAyMjYxNjMyMDBaMIGIMQswCQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5p
YTEWMBQGA1UEBxMNU2FuIEZyYW5jaXNjbzEZMBcGA1UEChMQQ2xvdWRGbGFyZSwg
SW5jLjEZMBcGA1UECxMQVGVzdCBDZXJ0aWZpY2F0ZTEWMBQGA1UEAwwNU1NMIENs
aWVudCAjMTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAMi7up5GuGop
kJXaXXQuQtncsX/SJWVOEyN1ZXJOLkkL1kSG8u5/mm5fWKzwQLTn5UBsVMyIzS0z
zLMpwP7QhSMl/lgdIwkvTX8Gpqe7Cqs2nhHsuYFtrEqOzBTqdVHDUhy8N95R7+S+
OMsbnyFq4TXP5zIGRj4dQUd0JudNDVnLcll04m6AF5UCAxFCkBuepU3hD27lC9NP
7wRoFM+3hwteQOdX4XHinHGn+imjlyHv9oBBE5/lO4JpO6TxQ45BSI9/4drQAvl7
iR+dNO1avKCGEXu2S7lygqfHU3MTMGu7tBg76hPn2X/IscaHZX157ROcTRZkeADx
My3ypS+qXA0CAwEAAaN1MHMwDgYDVR0PAQH/BAQDAgWgMBMGA1UdJQQMMAoGCCsG
AQUFBwMCMAwGA1UdEwEB/wQCMAAwHQYDVR0OBBYEFFa0NhueHsUoCJ21+a85slq8
hqRKMB8GA1UdIwQYMBaAFEX9Gvx1vPLPFgfhTZLV3eQYygkQMA0GCSqGSIb3DQEB
CwUAA4IBAQCYcBneR2+rIbfNPtPawixkgKIbqdaEV6xpFQAD0cF6ldbFsZwN3Yzx
XDOYx9K0c5FHR6smoNNpcoOU6hjSP+v3Bj06gY6qdgSjkHhTYDBV84w83jMy3FoR
FhjSCfE+dXJeLBYJWPrbEkc2VI8bWk8G7KM1x7c8cHsznW4ddqoZJDfx/tsUkJO8
y55C9gE8XM0/OTj5r1MCxEogM6Doq/RvF18ZV/MnaJA0B/KakD+lv+k0tSKM+tW9
waDaqY8JZP6n8jaUhQlGkwaufkgiaoy1U0b9CwkR+E/RQhUi1ahdgOiMN/HxVtI8
hkh4mSojjVuMKJQs7oWEgW+kbTmhCoT9

-----END CERTIFICATE-----
pizza-client.key
-----BEGIN RSA PRIVATE KEY-----

MIIEpQIBAAKCAQEAyLu6nka4aimQldpddC5C2dyxf9IlZU4TI3Vlck4uSQvWRIby
7n+abl9YrPBAtOflQGxUzIjNLTPMsynA/tCFIyX+WB0jCS9Nfwamp7sKqzaeEey5
gW2sSo7MFOp1UcNSHLw33lHv5L44yxufIWrhNc/nMgZGPh1BR3Qm500NWctyWXTi
boAXlQIDEUKQG56lTeEPbuUL00/vBGgUz7eHC15A51fhceKccaf6KaOXIe/2gEET
n+U7gmk7pPFDjkFIj3/h2tAC+XuJH5007Vq8oIYRe7ZLuXKCp8dTcxMwa7u0GDvq
E+fZf8ixxodlfXntE5xNFmR4APEzLfKlL6pcDQIDAQABAoIBADJifKsx0SREnpge
oYqB+iG5NYyB8QUGneMumnIgkZmgMP4uaVfYC6lcoWN3Qqal9nM/PeHBDM8ly2HF
Pz42lNSHutnfJmYty2PxBW/gkQL8yJxzMPT91Fs6kJtHZn9JaZjw3Y0eP/rIjHTe
0AiRTUo2jy+NR6Bbs4D99K3mN02sQ40EDYHP/hzuOe67Je34K7rYVxjfQRrW0iBG
ujz/vI6VvZAiPAb3r+7vx1IYnSz8+Br1hinQPvFo0q4GvdWE/aTt0VvoXt4ag6MP
zMxa+n767MHbdiIewrxOc8ok/JXl+4E8iKQA5vsLz2WnuUcqQbKvl/UAUPzcWD97
Uk0WUsECgYEA3y8mZz0CsHSOpp7+xc4a3Zn0FDX1BBg4HwH9WwqctojAqyNGDenB
0eVKTz5ICjo3GgUvsGRL2ZyEpGiFl0lAEa/XxlsLoR1IEG8BXVCe5vYNJf1UcKvk
1HYO0jmHBBLRC0obc2QnWiKH4qWhkZYd5WPwv06+QPKRdmJ2ktB3GzkCgYEA5j+C

https://blog.cloudflare.com/introducing-tls-client-auth/
https://blog.cloudflare.com/introducing-tls-client-auth/
https://support.cloudflare.com/hc/en-us/article_attachments/115000275371/pizza.pem

The ussl module Sample code

Digi MicroPython Programming Guide 57

M8OwopdvTS4trnXB4N3pZyTLZZnqUw7idD3mWGUyu13MGsnWK+V667kHtkamYyh4
DN9O66k0HN82HBCr4jdH5ZB8OSxDYVJnPmoY8j0r8+qRagvD8s6x363BOraP0N/t
80UgSKXivlxUDn9hHvvfzVO8p/U8VN9ZTxbzQ3UCgYEA1rKf6e6KGL93vxfylMzJ
kWYZpBun4VF/I20hkaQqz3nMhpV/PcEif81oZ8TNPnF0MmbM0o4ZXXSxMQuPf9Kq
fJlBJILPNCVb/tsaX+8/fYUzbtk9ksn5bt1HMrq+hI+pY4fd0mqFZLMVL1YQkGHt
zo8OuKqCYS43+r+Lu34pJhkCgYEAsTyR7WblwULw2miBoZnj9ETeNheMulkQl38N
so0zkzfTJYe+ZaCYzJGJXYrA9P7NdebhAoejKKTHCLKJ5HCw3yHOplfiR+Bavb/A
2bqyGUYdX1VhOlB0NaQGKDiIVbnSWucFNA4yG7oWIJLR4ZcMG92nGVcsEd4k4vBK
vybbe0ECgYEAotGxz7CvjwHP14rfQeK0jzmQk+ettccFsbTl0smZHgB4pY1wAIeV
a84vrGyzt4Id1V8ucQPWiLSasXLhgKIedoWmGdRNidIPQsa8Q8oH0OJwAZgQ/Pnk
6UVP9oaoE/clzjlIz0hDLVEsxBnTRxV4uNumrnW3ZLTDy3aJ07fKZ9Y=

-----END RSA PRIVATE KEY-----

2. Retrieve a CA certificate from the certification path of https://auth.pizza/.
n Use a web browser to visit the page and view its certificate. Web browsers vary, but you

can usually click on the secure lock icon next to the URL.
n Find the "Certification Path" for the certificate and select the top CA of the path. In the

sample code below, we trust any certificate with that CA at the top of its certification
path.

n Save the CA Certificate to your computer as a Base64 encoded X.509 file called pizza-
server-ca.pem.

pizza-server-ca.pem
-----BEGIN CERTIFICATE-----

MIIENjCCAx6gAwIBAgIBATANBgkqhkiG9w0BAQUFADBvMQswCQYDVQQGEwJTRTEU
MBIGA1UEChMLQWRkVHJ1c3QgQUIxJjAkBgNVBAsTHUFkZFRydXN0IEV4dGVybmFs
IFRUUCBOZXR3b3JrMSIwIAYDVQQDExlBZGRUcnVzdCBFeHRlcm5hbCBDQSBSb290
MB4XDTAwMDUzMDEwNDgzOFoXDTIwMDUzMDEwNDgzOFowbzELMAkGA1UEBhMCU0Ux
FDASBgNVBAoTC0FkZFRydXN0IEFCMSYwJAYDVQQLEx1BZGRUcnVzdCBFeHRlcm5h
bCBUVFAgTmV0d29yazEiMCAGA1UEAxMZQWRkVHJ1c3QgRXh0ZXJuYWwgQ0EgUm9v
dDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALf3GjPm8gAELTngTlvt
H7xsD821+iO2zt6bETOXpClMfZOfvUq8k+0DGuOPz+VtUFrWlymUWoCwSXrbLpX9
uMq/NzgtHj6RQa1wVsfwTz/oMp50ysiQVOnGXw94nZpAPA6sYapeFI+eh6FqUNzX
mk6vBbOmcZSccbNQYArHE504B4YCqOmoaSYYkKtMsE8jqzpPhNjfzp/haW+710LX
a0Tkx63ubUFfclpxCDezeWWkWaCUN/cALw3CknLa0Dhy2xSoRcRdKn23tNbE7qzN
E0S3ySvdQwAl+mG5aWpYIxG3pzOPVnVZ9c0p10a3CitlttNCbxWyuHv77+ldU9U0
WicCAwEAAaOB3DCB2TAdBgNVHQ4EFgQUrb2YejS0Jvf6xCZU7wO94CTLVBowCwYD
VR0PBAQDAgEGMA8GA1UdEwEB/wQFMAMBAf8wgZkGA1UdIwSBkTCBjoAUrb2YejS0
Jvf6xCZU7wO94CTLVBqhc6RxMG8xCzAJBgNVBAYTAlNFMRQwEgYDVQQKEwtBZGRU
cnVzdCBBQjEmMCQGA1UECxMdQWRkVHJ1c3QgRXh0ZXJuYWwgVFRQIE5ldHdvcmsx
IjAgBgNVBAMTGUFkZFRydXN0IEV4dGVybmFsIENBIFJvb3SCAQEwDQYJKoZIhvcN
AQEFBQADggEBALCb4IUlwtYj4g+WBpKdQZic2YR5gdkeWxQHIzZlj7DYd7usQWxH
YINRsPkyPef89iYTx4AWpb9a/IfPeHmJIZriTAcKhjW88t5RxNKWt9x+Tu5w/Rw5
6wwCURQtjr0W4MHfRnXnJK3s9EK0hZNwEGe6nQY1ShjTK3rMUUKhemPR5ruhxSvC
Nr4TDea9Y355e6cJDUCrat2PisP29owaQgVR1EX1n6diIWgVIEM8med8vSTYqZEX
c4g/VhsxOBi0cQ+azcgOno4uG+GMmIPLHzHxREzGBHNJdmAPx/i9F4BrLunMTA5a
mnkPIAou1Z5jJh5VkpTYghdae9C8x49OhgQ=

-----END CERTIFICATE-----

3. Upload the three files to the cert/ directory using XCTU or FS commands and YMODEM in a
terminal emulator. Since the .pem files contain public information, you can upload them with
the FS PUT command. In this example the key file is not much of a secret, but in a typical
installation you would upload the key file with the FS XPUT command to limit access to its

https://auth.pizza/

The ussl module Sample code

Digi MicroPython Programming Guide 58

contents.
4. Now you can use the following code snippet to test the connection to auth.pizza. Run it on a

computer with Python3 installed to verify that the files are set up correctly, and then try it in
MicroPython on an XBee Cellular Modem. If you try it without the keyfile, certfile and ca_certs
parameters to wrap_socket(), it will still connect but will get a different JSON response.

Note Saving the certificate with a .cer extension is acceptable.

You can copy and paste the following samples into the terminal.
pizza.py

Test code for CloudFlare's https://auth.pizza page
https://blog.cloudflare.com/introducing-tls-client-auth/

import sys
if sys.platform == 'xbee-cellular':

import usocket, ussl
proto = usocket.IPPROTO_SEC

else:
import socket as usocket
import ssl as ussl
proto = usocket.IPPROTO_TCP

print('Creating socket...')
s = usocket.socket(usocket.AF_INET, usocket.SOCK_STREAM, proto)
w = ussl.wrap_socket(s,

keyfile='cert/pizza-client.key',
certfile='cert/pizza-client.pem',
ca_certs='cert/pizza-server-ca.pem')

print('Opening connection...')
w.connect(('auth.pizza', 443))
w.write(b'GET / HTTP/1.0\r\nHost: auth.pizza\r\nAccept:
application/json\r\n\r\n')
print(str(w.read(4096), 'utf-8'))
w.close()

5. Make use of urequests.py for an easier interface to make web page requests and parse the
responses.

auth_pizza-ureqests.py

Test code for CloudFlare's https://auth.pizza page
https://blog.cloudflare.com/introducing-tls-client-auth/

import sys

if sys.platform == 'xbee-cellular':
import urequests

else:
import requests as urequests

print('Sending request...')
r = urequests.get('https://auth.pizza',

headers={'Accept': 'application/json'},
verify='cert/pizza-ca.pem',
cert=('cert/pizza-client.pem', 'cert/pizza-

client.key'))

The ussl module Sample code

Digi MicroPython Programming Guide 59

print(r.text)

Use AWS IoT from MicroPython

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

You can use MicroPython to connect an XBee Cellular Modem to the Amazon Web Services (AWS) IoT
cloud.

Add an XBee Cellular Modem as an AWS IoT device 61
Create a policy for access control 61
Create a Thing 62
Install the certificates 63
Test the connection 64
Publish to a topic 66
Confirm published data 67
Subscribe to updates from AWS 67

Digi MicroPython Programming Guide 60

Use AWS IoT from MicroPython Add an XBee Cellular Modem as an AWS IoT device

Digi MicroPython Programming Guide 61

Add an XBee Cellular Modem as an AWS IoT device
First, log in to AWS. To do this:

1. If you do not already have one, sign up for a Basic AWS account with twelve months of free tier
access.

2. You can add devices and generate certificates, but they might not be able to connect until you
receive an email from Amazon confirming that your AWS account is ready.

Create a policy for access control
Once you have an AWS account, log into the AWS IoT Console.
Use the following policy as a starting point for testing. It allows any device with a valid certificate to
connect and perform various actions, which you will use for testing your client certificate via HTTPS.
In the left navigation pane, choose Secure, and then Policies. On the You don't have a policy yet
page, choose Create a policy; see Create an AWS IoT Policy.
Once there, you can create a policy and enter advancedmode to paste in the following open policy.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"iot:Connect",
"iot:GetThingShadow",
"iot:Publish",
"iot:Receive",
"iot:Subscribe"

],
"Resource": [
"*"

]
}

]
}

Once you have things working, you can switch to a more restrictive policy that limits a Thing to
connecting with its ThingName as its ClientId, and publishing and subscribing only to topics under its
type/name in the topic hierarchy.
The client ARNs follow this format:
arn:aws:iot:your-region:your-aws-account:client/<my-client-id>

Note Replace the region and account numbers in the following sample code with your own
information.

https://portal.aws.amazon.com/billing/signup#/start
https://console.aws.amazon.com/iot/home
https://docs.aws.amazon.com/iot/latest/developerguide/create-iot-policy.html

Use AWS IoT from MicroPython Create a Thing

Digi MicroPython Programming Guide 62

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": "iot:Connect",
"Resource": "*",
"Condition": {
"Bool": {
"iot:Connection.Thing.IsAttached": [
"true"

]
},
"StringEquals": {
"iot:ClientId": "${iot:Connection.Thing.ThingName}"

}
}

},
{
"Effect": "Allow",
"Action": [
"iot:Publish",
"iot:Receive"

],
"Resource": [
"arn:aws:iot:us-east-

1:123456789012:topic/${iot:Connection.Thing.ThingTypeName}/${iot:Connec
tion.Thing.ThingName}",

"arn:aws:iot:us-east-
1:123456789012:topic/${iot:Connection.Thing.ThingTypeName}/${iot:Connec
tion.Thing.ThingName}/*"

]
},
{
"Effect": "Allow",
"Action": [
"iot:Subscribe"

],
"Resource": [
"arn:aws:iot:us-east-

1:123456789012:topicfilter/${iot:Connection.Thing.ThingTypeName}/${iot:
Connection.Thing.ThingName}",

"arn:aws:iot:us-east-
1:123456789012:topicfilter/${iot:Connection.Thing.ThingTypeName}/${iot:
Connection.Thing.ThingName}/*"

]
}

]
}

Create a Thing
From the AWS services page, choose IoT Core.

Use AWS IoT from MicroPython Install the certificates

Digi MicroPython Programming Guide 63

In AWS IoT:

1. On the page that says You don't have any things yet, choose Register a thing.
2. On the Creating AWS IoT things page, choose Create a single thing.
3. In the Name field, give a unique name to your device.
4. In the Thing Type field, choose Create a type.
5. Type XBee_Cellular in the Name field.
6. In the Attribute key field, type IMEI. You can use this IMEI attribute key to identify a specific

device if you addmultiple devices to the AWS account. Use the ATIM command to get the XBee
device's IMEI.

7. Choose Create thing type.
8. Choose Next to add your device to the registry.
9. Choose Create certificate to use One-click certificate creation to generate a certificate, public

key and private key for your device.
10. Download the certificate, public key and private key for this specific device. You will not use the

public key file, but this is your only opportunity to download it—you can generate new
certificates for your device if you somehow misplace them. You also need the root CA for AWS
IoT, this file should be identical for all devices you connect to your account.

11. Once you have downloaded all of the files, choose Attach a Policy to attach the policy created
previously.

12. In the left navigation pane, choose Manage, and then choose Certificates. If the certificate
says Inactive on its row, click Activate in the drop-downmenu on the right side of the
certificate's row to activate it.

Install the certificates
Place the downloaded certificates into a folder with a name to match your Thing's name or the 10-
character ID used in the filenames that correspond to the start of the certificate's ID shown in the
AWS IoT console.
To simplify file management on the XBee device and to allow re-use of the same code onmultiple
devices, give the files shorter names.

Use AWS IoT from MicroPython Test the connection

Digi MicroPython Programming Guide 64

Original name New name

9770fec281-certificate.pem.crt aws.crt

9770fec281-private.pem.key aws.key

9770fec281-public.pem.key (unused)

VeriSign-Class 3-Public-Primary-Certification-Authority-G5.pem aws.ca

Use XCTU or ATFS commands in a terminal emulator to upload the three files to the cert/ directory on
the XBee device. For security, use ATFS XPUT to upload the aws.key as a secure file.

Test the connection
Update the following samples with settings for your AWS account and the Thing you are testing with,
and use it to test your certificates. All samples use the same settings so you can easily paste your
configuration to the top of each sample. You can identify the elements of the AWS endpoint (such as
host, region, account) and the elements of this Thing (such as Thing type, Thing name).
You can first test with the following code on your computer with Python3 (run from the command line
python aws_https_pc.py):

Test code to run from Python3 on a PC

AWS IoT Account for this Thing
host = b'ABCDEFG1234567'
region = b'us-east-1'
account = b'123456789012'
aws_endpoint = b'%s.iot.%s.amazonaws.com' % (host, region)

This Thing's type and name
thing_type = b'XBee_Cellular'
thing_name = b'IMEI_63890'

import socket, ssl

s = socket.socket()
w = ssl.wrap_socket(s,

keyfile='cert/aws.key',
certfile='cert/aws.crt',
ca_certs='cert/aws.ca')

w.connect((aws_endpoint, 8443))
w.write(b'GET /things/%s/shadow HTTP/1.0\r\nHost: %s\r\n\r\n' % (thing_name,
aws_endpoint))
print(str(w.read(1024), 'utf-8'))
w.close()

You should see sample output something like this on you computer:

HTTP/1.1 200 OK
content-type: application/json
content-length: 61
date: Thu, 05 Jul 2018 01:24:15 GMT
x-amzn-RequestId: 37e93081-06f5-0bc2-1384-5a129eb0ac30
connection: keep-alive

{"state":{},"metadata":{},"version":1,"timestamp":1530753855}

Use AWS IoT from MicroPython Test the connection

Digi MicroPython Programming Guide 65

Once you confirm that the certificates and policy on your AWS account are correct, you can test on the
XBee device with the following code. It configures the socket as non-blocking in order to return any
amount of data read instead of blocking until receiving the full byte count (for rexample, 1024 below).

Note It is easiest to use paste mode by pressing CTRL-E from the REPL.

AWS IoT Account for this Thing
host = b'ABCDEFG1234567'
region = b'us-east-1'
account = b'123456789012'
aws_endpoint = b'%s.iot.%s.amazonaws.com' % (host, region)

This Thing's type and name
thing_type = b'XBee_Cellular'
thing_name = b'IMEI_63890'

import usocket, ussl

s = usocket.socket(usocket.AF_INET, usocket.SOCK_STREAM, usocket.IPPROTO_
SEC)
s.setblocking(False)
w = ussl.wrap_socket(s,

keyfile='cert/aws.key',
certfile='cert/aws.crt',
ca_certs='cert/aws.ca')

w.connect((aws_endpoint, 8443))
w.write(b'GET /things/%s/shadow HTTP/1.0\r\nHost: %s\r\n\r\n' % (thing_name,
aws_endpoint))

while True:
data = w.read(1024)
if data:

print(str(data, 'utf-8'))
break

w.close()

The XBee device includes additional blank lines because the HTTP response uses CRLF for line
endings, and starts with the return value of the w.write() call (in this case, 92 bytes written):

92
HTTP/1.1 200 OK

content-type: application/json

content-length: 61

date: Thu, 05 Jul 2018 19:28:03 GMT

x-amzn-RequestId: 0744caf6-2162-1d4f-c4f9-67a2d7ff2ce9

connection: keep-alive

{"state":{},"metadata":{},"version":1,"timestamp":1530818883}

Use AWS IoT from MicroPython Publish to a topic

Digi MicroPython Programming Guide 66

Publish to a topic
You can use the umqtt.simple module to publish data to a topic. This code demonstrates publishing to
a topic based on the Thing type and name.

"""
Copyright (c) 2018, Digi International, Inc.
Sample code released under MIT License.

Instructions:

- Ensure that the umqtt/simple.py module is in the /flash/lib directory
on the XBee Filesystem

- Ensure that the SSL certificate files are in the /flash/cert directory
on the XBee Filesystem
- "ssl_params" shows which ssl parameters are required, and gives
examples for referencing the files
- If needed, replace the file paths to match the certificates you're

using
- The policy attached to the SSL certificates must allow for
publishing, subscribing, connecting, and receiving

- The host and region need to be filled in to create a valid
AWS endpoint to connect to

- Send this code to your XBee module using paste mode (CTRL-E)

- If you want to change any of the params in the method, call the method
again

and pass in the params you want

"""

from umqtt.simple import MQTTClient
import time, network

AWS endpoint parameters
host = b'FILL_ME_IN' # ex: b'abcdefg1234567'
region = b'FILL_ME_IN' # ex: b'us-east-1'

aws_endpoint = b'%s.iot.%s.amazonaws.com' % (host, region)
ssl_params = {'keyfile': "/flash/cert/aws.key",

'certfile': "/flash/cert/aws.crt",
'ca_certs': "/flash/cert/aws.ca"} # ssl certs

conn = network.Cellular()
while not conn.isconnected():

print("waiting for network connection...")
time.sleep(4)

print("network connected")

def publish_test(clientId="clientId", hostname=aws_endpoint, sslp=ssl_
params):

"clientId" should be unique for each device connected
c = MQTTClient(clientId, aws_endpoint, ssl=True, ssl_params=sslp)
print("connecting...")
c.connect()
print("connected")

topic: "sample/xbee"
message: {message: AWS Samples are cool!}

https://github.com/micropython/micropython-lib/tree/master/umqtt.simple

Use AWS IoT from MicroPython Confirm published data

Digi MicroPython Programming Guide 67

print("publishing message...")
c.publish("sample/xbee", '{"message": "AWS Sample Message"}')
print("published")
c.disconnect()
print("DONE")

publish_test()

Confirm published data
From the AWS IoT Console, choose Test and subscribe to the topic # to see all messages pushed to
your account.

Note You will not see old messages, so open the Test console before running the sample code on your
device.

You can also navigate to your Thing and choose Activity to monitor when your Thing makes an MQTT
connection and then disconnects it.

Subscribe to updates from AWS
The XBee Cellular Modem can subscribe to topics published on the AWS server.

"""
Copyright (c) 2018, Digi International, Inc.
Sample code released under MIT License.

Instructions:

- Ensure that the umqtt/simple.py module is in the /flash/lib directory
on the XBee Filesystem

- Ensure that the SSL certificate files are in the /flash/cert directory
on the XBee Filesystem
- "ssl_params" shows which ssl parameters are required, and gives
examples for referencing the files
- If needed, replace the file paths to match the certificates you're

using
- The policy attached to the SSL certificates must allow for
publishing, subscribing, connecting, and receiving

- The host and region need to be filled in to create a valid
AWS endpoint to connect to

- The loop that checks for incoming traffic will end after it recieves
"msg_limit" messages

- Send this code to your XBee module using paste mode (CTRL-E)

- If you want to change any of the params in the method, call the method
again

and pass in the params you want

"""

from umqtt.simple import MQTTClient
import time, network

AWS endpoint parameters
host = b'FILL_ME_IN' # ex: b'abcdefg1234567'

Use AWS IoT from MicroPython Subscribe to updates from AWS

Digi MicroPython Programming Guide 68

region = b'FILL_ME_IN' # ex: b'us-east-1'

aws_endpoint = b'%s.iot.%s.amazonaws.com' % (host, region)
ssl_params = {'keyfile': "/flash/cert/aws.key",

'certfile': "/flash/cert/aws.crt",
'ca_certs': "/flash/cert/aws.ca"} # ssl certs

msgs_received = 0
conn = network.Cellular()
while not conn.isconnected():

print("waiting for network connection...")
time.sleep(4)

print("network connected")

Received messages from subscriptions will be delivered to this callback
def sub_cb(topic, msg):

global msgs_received
msgs_received += 1
print(topic, msg)

def subscribe_test(clientId="clientId", hostname=aws_endpoint, sslp=ssl_
params, msg_limit=2):

"clientId" should be unique for each device connected
c = MQTTClient(clientId, hostname, ssl=True, ssl_params=sslp)
c.set_callback(sub_cb)
print("connecting...")
c.connect()
print("connected")
c.subscribe("sample/xbee")
print("subscribed")
print('waiting...')
global msgs_received
msgs_received = 0
while msgs_received < msg_limit:

c.check_msg()
time.sleep(1)

c.disconnect()
print("DONE")

subscribe_test()

Time module example: get the current time

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

Use the time module to get the current time on the cellular network. The XBee Cellular Modemmust
be connected to the cellular network.
The following examples describe coding the time module.

Retrieve the local time 70
Retrieve time with a loop 70
Delay and timing quick reference 71

Digi MicroPython Programming Guide 69

Timemodule example: get the current time Retrieve the local time

Digi MicroPython Programming Guide 70

Retrieve the local time
This code sample shows how to retrieve the local time. The time format is: year, month, day, hour,
second, day of week, day of year.

Note Day of week is 0 - 6 for Monday - Sunday and day of year is 1 - 366.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type import time and press Enter.
3. At the MicroPython >>> prompt, type time.localtime() and press Enter. The current time

prints.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
>>> import time
>>> time.localtime()
(2017, 1, 13, 14, 51, 18, 4, 13)

Retrieve time with a loop
In this example, you can use the time module to get the current time every five seconds. The code
executes in a loop, for a total of five loop iterations. In each iteration, the current local time is printed
to the terminal and then pauses for five seconds.
The time format is: year, month, day, hour, second, day of week, day of year.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below:

import time
print("\nPreparing to print the current time 5 times, once every 5
seconds.")
print("The time format is (year, month, day, hour, second, day,
yearday)\n")
for _ in range(5): # Loop 5 times.

print(time.localtime()) # Print out the current time.
print("Pause 5 seconds")
time.sleep(5)

print("Done!")

3. At the MicroPython >>> prompt, press Crtl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. The sample output below shows the five

loops that iterate every five seconds.

Preparing to print the current time 5 times, once every 5 seconds.
The time format is (year, month, day, hour, second, day, yearday)

(2017, 5, 10, 11, 30, 55, 2, 130)
Pause 5 seconds
(2017, 5, 10, 11, 31, 0, 2, 130)

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Timemodule example: get the current time Delay and timing quick reference

Digi MicroPython Programming Guide 71

Pause 5 seconds
(2017, 5, 10, 11, 31, 5, 2, 130)
Pause 5 seconds
(2017, 5, 10, 11, 31, 10, 2, 130)
Pause 5 seconds
(2017, 5, 10, 11, 31, 15, 2, 130)
Pause 5 seconds
Done!

Delay and timing quick reference
The table below contains additional time commands that you can use.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

import time

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(10) # sleep for 10 microseconds
start = time.ticks_ms() # get value of millisecond counter
delta = time.ticks_diff(time.ticks_ms(), start) # compute time difference

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Cellular network connection examples

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

You can use MicroPython code to check network connection on the XBee Cellular Modem.
The coding samples in the sections below show different methods you can use to check the network
connection.

Check the network connection 73
Check network connection with a loop 73
Check network connection and print connection parameters 74

Digi MicroPython Programming Guide 72

Cellular network connection examples Check the network connection

Digi MicroPython Programming Guide 73

Check the network connection
The ifconfig() method returns connection elements: IP address, subnet mask, default gateway and
DNS server.
Because cellular connections are point-to-point, the subnet mask and default gateway are always
255.255.255.255 and 0.0.0.0. The XBee Cellular Modem reports 0.0.0.0 for its IP address and DNS
server until it completes a connection to the cellular network.
In this sample, the return value options for the isconnected() method are:

n False: The XBee Cellular Modem is not connected to the cellular network. The IP address
reported by ifconfig() is 0.0.0.0.

n True: The XBee Cellular Modem is connected to the cellular network. All connection elements
should be populated.

Note that the connection elements that print depend on the XBee Cellular Modem network
configuration.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type import network and press Enter.
3. At the MicroPython >>> prompt, type c = network.Cellular() and press Enter.
4. At the MicroPython >>> prompt, type c.isconnected() and press Enter.

o If the return value is False, the cellular connection is not complete. Wait until the red
LED on the XBIB board is flashing (or if you have a different board, wait 5 to 10 seconds),
and run the command again.

o If the return value is True, the cellular connection is complete.
5. Once the cellular connection is complete, you can print the IP settings. At the MicroPython >>>

prompt, type c.ifconfig() and press Enter to print the settings.

MicroPython v1.9.3-999-g00000000 on 2018-01-01; XBee Module with EFX32
Type "help()" for more information.
>>> import network
>>> c = network.Cellular()
>>> c.isconnected()
True
>>> c.ifconfig()
('100.96.17.xx', '255.255.255.255', '0.0.0.0', '100.96.17.xx')

Check network connection with a loop
The code in this example waits for the module to connect to the cellular network and then prints the
connection message andmodule network configuration information.
Note that the connection elements that print depend on the XBee Cellular Modem network
configuration.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Cellular network connection examples Check network connection and print connection parameters

Digi MicroPython Programming Guide 74

1. Access the MicroPython environment.
2. Copy the sample code shown below:

import network
import time

c = network.Cellular() # initialize Cellular object

while not c.isconnected(): # return if the module is connected to cellular
network

time.sleep_ms(100) # delay
print("It is now connected")
print("My IP address is",c.ifconfig()[0])

3. Press Crtl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option. Once pasted, the code

should execute immediately.

It is now connected
My IP address is 166.184.xxx.xxx

Check network connection and print connection parameters
The code in this example waits for the module to connect to the cellular network and then prints the
connection message and the XBee Cellular Modem's connection parameters.
Note that the connection elements that print depend on the XBee Cellular Modem network
configuration.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below:

import network
import time

c = network.Cellular() # Initialize Cellular object.

Wait until the module is connected to the cellular network.
while not c.isconnected():

print("Waiting to be connected to the cellular network...")
time.sleep_ms(1500) # Pause 1.5 seconds between checking connection

print("Module is now connected to cellular network")
print("Here is a summary of module status:")
print("IP address:", c.ifconfig()[0])
print("SIM card number:", c.config('iccid'))
print("International Mobile Equipment Identity:", c.config('imei'))
print("Network operator:", c.config('operator'))
print("Phone number:", c.config('phone'))

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Cellular network connection examples Check network connection and print connection parameters

Digi MicroPython Programming Guide 75

3. Press Crtl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option. Once pasted, the code

should execute immediately.

Waiting to be connected to the cellular network...
Module is now connected to cellular network
Here is a summary of module status:
IP address: 166.184.xxx.xxx
SIM card number: 89014103278193xxxxxx
International Mobile Equipment Identity: 357520070xxxxxx
Network operator: AT&T
Phone number: 1612xxxxxxx

Socket examples

The following sections include code samples for using sockets with the XBee Cellular Modem.

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

Sockets 77
Basic socket operations: sending and receiving data, and closing the network connection 77
Specialized receiving: send received data to a specific memory location 79
DNS lookup 80
Set the timeout value and blocking/non-blocking mode 81
Send an HTTP request and dump the response 83
Socket errors 83
Unsupportedmethods 84

Digi MicroPython Programming Guide 76

Socket examples Sockets

Digi MicroPython Programming Guide 77

Sockets
A socket provides a reliable data stream between connected network devices. You must import the
usocket module so that you can create and use socket objects.
If you are trying different socket examples and you have not power-cycled the XBee Cellular Modem or
cleared the MicroPython volatile memory (RAM), it is not necessary to re-type the following code, as it
remains in the memory.

Basic socket operations: sending and receiving data, and closing
the network connection

A socket opens a network connection, so that data can be requested by the XBee Cellular Modem. The
request is sent to the specified destination, and then received by the module. Once the data
communication is complete, you should close the socket to close the network connection.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

Basic data exchange code sample
The following example shows basic data exchange between a computer and a website.

1. Access the MicroPython environment.
2. Copy the sample code shown below.
3. Press Crtl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately.

Import the socket module.
This allows the creation/use of socket objects.

import usocket
Create a TCP socket that can communicate over the internet.
socketObject = usocket.socket(usocket.AF_INET, usocket.SOCK_STREAM)
Create a "request" string, which is how we "ask" the web server for data.
request = "GET /ks/test.html HTTP/1.1\r\nHost: www.micropython.org\r\n\r\n"
Connect the socket object to the web server
socketObject.connect(("www.micropython.org", 80))
Send the "GET" request to the MicroPython web server.
A "GET" request asks the server for the web page data.
bytessent = socketObject.send(request)
print("\r\nSent %d byte GET request to the web server." % bytessent)

print("Printing first 3 lines of server's response: \r\n")
Single lines can be read from the socket,
useful for separating headers or
reading other data line-by-line.
Use the "readline" call to do this.
Calling it a few times will show the
first few lines from the server's response.
socketObject.readline()
socketObject.readline()
socketObject.readline()

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Socket examples Basic socket operations: sending and receiving data, and closing the network connection

Digi MicroPython Programming Guide 78

The first 3 lines of the server's response
will be received and output to the terminal.

print("\nPrinting the remainder of the server's response: \n")
Use a "standard" receive call, "recv",
to receive a specified number of
bytes from the server, or as many bytes as are available.
Receive and output the remainder of the page data.
socketObject.recv(512)

Close the socket's current connection now that we are finished.
socketObject.close()
print("Socket closed.")

Response header lines
The first three lines received using the readline() call should look like the following output sample.
Note that the date reflects the current system date and time. These three lines are the "response
headers" of the server's reply, and include relevant data about the server and the content of the data
in the reply.

HTTP/1.1 200 OK
Server: nginx/1.8.1
Date: Tue, 28 Mar 2017 21:31:22 GMT

First line
The first line in the response depends on whether a valid request was sent.

n Valid request: If a valid request was sent and it was processed correctly, the first line should
always be "HTTP/1.1 200 OK".

n Invalid request: If an invalid request was sent, a response similar to "HTTP/1.1 400 Bad
Request" is received. This can occur if a typographical error is the original request, or if you do
not specify the host in the request with the line "Host: www.example.com".

recv() call
The recv() call receives the remainder of the page data. In this example, the requested page is small,
so all of the data remaining after the 3 readline() calls is received in this one call.
Several more "response headers" are visible in the reply to this call, followed by some HTML tags,
such as "<!DOCTYPE>" and "<head>". The web page being requested in the example consists only of a
header that reads "Test", with text underneath it reading "It's working if you can read this!" This
content is visible within the response, all of the content is inside of "<body>" tags, and the header is
inside of "<h1>" tags, also visible in the response.

Additional examples
If you want to try this example on other web servers, and see the different responses, you can repeat
the previous steps, but replace the following:

n /ks/test.html: This is inside the "request" variable and you can replace it with with "/" or a
specific path on a server.

n www.micropython.org: This is inside the "request" variable AND inside the "address" variable
and you can replace it with the address of the site you want to test.

Socket examples Specialized receiving: send received data to a specific memory location

Digi MicroPython Programming Guide 79

Note If you have not power-cycled the XBee Cellular Modem, and have not cleared the MicroPython
volatile memory (RAM) with a soft reboot, you do not need to re-type lines 2 or 4 of the above
example, since you already imported usocket and created the socket object. If you power off the XBee
Cellular Modem, however, or clear the MicroPython heap with a soft reboot, you need to import
usocket again and create the socket object again. Any variables you created will also no longer be in
memory.

Specialized receiving: send received data to a specific memory
location

You can use the readinto() method to receive data from a socket and save it to a buffer, which is a
specific memory location for reading and writing data. This is useful for processing data, since
processing operations can simply read from the buffer. You must create a buffer object to which the
readinto() method can write the data.
This method receives data from a socket in the same manner as the recv() method, but allows you to
specify a buffer location.
In this example, the readinto() method performs a read on the socket, and puts the data into buffer
that is specified by the user.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

The following example shows how to receive data from a socket and save it to a buffer. The readinto
() method performs a read on the socket, as can be done with recv(), but puts the data into a buffer
specified by the user. This is useful for processing data since you can reuse a dedicated buffer for
received data, and processing operations can simply read from that buffer.

1. Access the MicroPython environment.
2. Copy the sample code shown below.
3. Press Crtl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately.

Import the usocket module.

import usocket
Create socket object.
socketObject = usocket.socket(usocket.AF_INET, usocket.SOCK_STREAM)
Create address variable.
address = ("www.micropython.org", 80)
Create request variable.
request = "GET /ks/test.html HTTP/1.1\r\nHost: www.micropython.org\r\n\r\n"
Create a blank array of bytes in memory, which can be used as a buffer.
buff = bytes object(1024)
Connect the socket object to the web server specified in "address".
socketObject.connect(address)
Send the GET request to the MicroPython web server.
bytessent = socketObject.send(request)
print("\nSent %d byte GET request to server\n" % bytessent)

print("Waiting on server response...\n")

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Socket examples DNS lookup

Digi MicroPython Programming Guide 80

Read data from the socket and put it into the buffer we created.
"readinto" will read as many bytes as fit in the buffer, in this case
1024.
bytesread = socketObject.readinto(buff)
print("%d bytes written to buffer!" % bytesread)
Print the contents of the buffer, showing that the "readinto" call wrote
the web server's response into memory.
print("Contents of buffer: \n")
print(str(buff[:bytesread], 'utf8'))
Close the socket.
socketObject.close()
print("Socket closed.")

DNS lookup
You can use the getaddrinfo() function in the socket module to perform a DNS lookup of a of a
domain name, or retrieve information about a domain name or IP address.
In this example, this code imports the socket module and uses getaddrinfo() to perform a
DNS lookup on www.micropython.org. The target port is 80.
For detailed information about getaddrinfo(), see
micropython.org/resources/docs/en/latest/wipy/library/usocket.html.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below.
3. Press Crtl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option.

import socket
Return tuple (family, type, proto, canonname, sockaddr)
print("\nCalling getaddrinfo() for micropython.org on port 80,")
print("this will return information about the host address in the")
print("following format:")
print("[family, type, proto, canonname, sockaddr]\n")
print(socket.getaddrinfo('www.micropython.org', 80))

Return sockaddr, which consists of an IP address and port
print("\nCalling getaddrinfo(), but returning only the address/port tuple")
print("(\"sockaddr\") via indexing the output of getaddrinfo().\n")
print(socket.getaddrinfo('www.micropython.org', 80)[0][-1])

Return the IP address only
print("\nFinally, returning ONLY the IP address, via more specific")
print("indexing.\n")
print(socket.getaddrinfo('www.micropython.org', 80)[0][-1][0])

5. Once pasted, the code should execute immediately. The output should be similar to the output
shown below.

Calling getaddrinfo() for micropython.org on port 80, this will

http://www.micropython.org/
http://docs.micropython.org/en/latest/pyboard/library/usocket.html
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Socket examples Set the timeout value and blocking/non-blocking mode

Digi MicroPython Programming Guide 81

return information about the host address in the following format:
[family, type, proto, canonname, sockaddr]

[(2, 1, 0, '', ('176.58.119.26', 80))]

Calling getaddrinfo(), but returning only the address/port tuple
("sockaddr") via indexing the output of getaddrinfo().

('176.58.119.26', 80)

Finally, returning ONLY the IP address, via more specific
indexing.

176.58.119.26

DNS lookup code output
The output of the getaddrinfo() method call is in the following form: (family, type, protocol,
canonname, sockaddr)
In the output sample, the fourth line of text includes the output of the getaddrinfo() method call.

Value Description

2 <family>
An integer that represents the type of connection the socket is using.
Represents the usocket.AF_INET, meaning an internet family of connection.

1 <type>
An integer that represents the type of connection the socket is using.
Represents usocket.SOCK_STREAM, meaning a TCP connection.

0 <protocol>
An integer that represents the type of connection the socket is using.
Represents usocket.IPPROTO_IP, meaning the IP protocol.

empty string <canonname>
A string that represents the "canonical" name of the host, if it has one. If the host
does not have a "canonical" name, an empty string is used.

176.58.119.26,
80

<sockaddr>
The IP address and port number of the machine you queried.

Set the timeout value and blocking/non-blocking mode
You can set the socket's timeout value using the settimeout() module. The timeout value is the
amount of time the socket waits for data to become available to read.
The value can be set to one of the following:

n Non-negative integer: Defines the length of time for the timeout value. The time is measured
in seconds.

n Floating-point value: Defines the length of time for the timeout value. The time is measured
in seconds.

Socket examples Set the timeout value and blocking/non-blocking mode

Digi MicroPython Programming Guide 82

n 0 (zero): Makes the socket non-blocking. The socket returns immediately, regardless of
whether there is anything to read.

n None: Makes the socket blocking. The socket waits indefinitely for data to become available to
read, or waits up until the socket times out or closes.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

The code below shows examples of all of these options:

Import the socket module.
import usocket
Create socket object.
socketObject = usocket.socket(usocket.AF_INET, usocket.SOCK_STREAM)
Create address variable.
address = ("www.micropython.org", 80)
Connect to the server specified in "address".
socketObject.connect(address)
print("\nSetting socket timeout to 5 seconds.")
Set the timeout to 5 seconds.
socketObject.settimeout(5)
print("Calling RECV- this will timeout since no data was requested.\n")
Call "recv", even though no data has been requested from the host yet,
meaning none will be received.
try:

socketObject.recv(1024)
except OSError as error:

print("Socket timed out!\n")
except:

print("An error occurred.")

After 5 seconds, there will be an "ETIMEDOUT" OSError, meaning
the read timed out. This will not print to the screen since it is caught
by the "except" block.
print("Setting socket timeout to zero (non-blocking).")
Set the socket to be non-blocking, by setting the timeout to 0.
socketObject.settimeout(0)
print("Calling RECV- should return immediately with no data.\n")
Call "recv".
try:

socketObject.recv(1024)
except OSError:

print("No data to read!\n")
except:

print("An error occurred.")

The call will return right away.
print("Setting socket mode to \"Blocking\" meaning it will wait for data.")
NOTE: the method "setblocking" is a shorthand way of setting blocking:
calling "socketObject.setblocking(False)" is shorthand for calling
"socketObject.settimeout(0)".
This call will set the socket to be blocking:
socketObject.setblocking(True)
print("Calling RECV with a blocking socket.")
print("This will wait for data, until it either receives it,")
print("the socket times out, or the user cancels the call.\n")
print("This call will time out after approximately 60 seconds. If you
don't")

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Socket examples Send an HTTP request and dump the response

Digi MicroPython Programming Guide 83

print("feel like waiting to see that happen, feel free to")
print("press Ctrl-C to cancel the RECV call and return to a prompt...")
Call "recv".
socketObject.recv(1024)
The call will not return until the server sends data (which won't happen
in
this case, since none was requested), or the socket times out.

Send an HTTP request and dump the response
You can use the http_get() command to send an HTTP request and then dump the response. You can
use the dump_socket() method with any open socket, and it will automatically exit when the remote
end closes the connection.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below. This code splits a URL into the hostname and path,

connects to the server at the host name, and sends a request for the page at the path. The
code then prints the response to the screen.

import socket

def http_get(url):
scheme, _, host, path = url.split('/', 3)
s = socket.socket()
try:

s.connect((host, 80))
request=bytes('GET /%s HTTP/1.1\r\nHost: %s\r\n\r\n' % (path, host),

'utf8')
print("Requesting /%s from host %s\n" % (path, host))
s.send(request)
while True:

print(str(s.recv(500), 'utf8'), end = '')
finally:

s.close()

3. At the MicroPython >>> prompt, press Crtl+E to enter paste mode.
4. At the MicroPython 1=== prompt, right-click and select the Paste option.

5. After pasting the code, press Ctrl+D to finish. You can now retrieve URLs a the MicroPython >>>
prompt.

>>> http_get('http://www.micropython.org/ks/test.html')

Socket errors
Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

This following socket errors may occur.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

Socket examples Unsupported methods

Digi MicroPython Programming Guide 84

ENOTCONN: Time out error
If a socket stays idle too long, it will time out and disconnect. Attempting to send data over a socket
that has timed out produces the OSError ENOTCONN, meaning "Error, not connected." If this
happens, perform another connect() call on the socket to be able to send data again.

ENFILE: No sockets are available
The socket.socket() or socket.connect() method returns an OSError (ENFILE) exception if no sockets
are available. If you are already using all of the available sockets, this error may occur in the few
seconds between calling socket.close() to close a socket, and when the socket is completely closed
and returned to the socket pool.
You can use the following methods to close sockets andmake more sockets available:

n Close abandoned sockets: Initiate garbage collection (gc.collect()) to close any abandoned
MicroPython sockets. For example, an abandoned socket could occur if a socket was created in
a function but not returned. For information about the gc module, see the MicroPython
garbage collection documentation.

n Close all allocated sockets: Press Ctrl+D to perform a soft reset of the MicroPython REPL to
close all allocated sockets and return them to the socket pool.

ENXIO: No such device or address
OSError(ENXIO) is returned when DNS lookups fail from calling usocket.getaddrinfo().

Unsupported methods
The following methods are standard features of the Python socket interface that are not supported
on this version of the XBee Cellular Modem.

n setsockopt()

http://docs.micropython.org/en/latest/pyboard/library/gc.html
http://docs.micropython.org/en/latest/pyboard/library/gc.html

I/O pin examples

The following sections include code samples for changing the XBee Cellular Modem pins.

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

Change I/O pins 86
Print a list of pins 86
Change output pin values: turn LEDs on and off 86
Poll input pin values 87
Check the configuration of a pin 88
Check the pull-upmode of a pin 89
Measure voltage on the pin (Analog to Digital Converter) 91

Digi MicroPython Programming Guide 85

I/O pin examples Change I/O pins

Digi MicroPython Programming Guide 86

Change I/O pins
You can use MicroPython to change the pins on the XBee Cellular Modem .
By initializing a pin object, you can change the pin to be an input pin or an output pin.

n If a pin is set up as an output, a pin's output value can be set on or off.
n If the pin is set up as a digital input, you can read the digital value on it.

When initializing a pin, the first argument must be an object within the machine.Pin.board module, or
a string that matches one of these objects.
For example, in the line of code below, the identifier P0 refers to the DIO10/PWM0 pin:

dio10 = Pin("P0", Pin.OUT)

Note You can replace P0 with Pin.board.P0 as P0 is a quoted string and Pin.board.P0 is an object
reference. Pin.board.P0 only works if you have previously entered from machine import Pin.

Note MicroPython does not currently support identifying a pin with an integer ID.

The pins available to the system can be seen after importing the machine module by typing dir
(machine.Pin.board).

Print a list of pins
You can use the help(Pin.board) command to print a list of the pins available on the XBee Cellular
Modem.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type from machine import Pin and press Enter.
3. At the MicroPython >>> prompt, type help(Pin.board) and press Enter. The following is a list

of available pins.

>>> from machine import Pin
>>> help(Pin.board)
object <class 'board'> is of type type
D0 -- Pin(Pin.board.D0, mode=Pin.IN, pull=Pin.PULL_UP)
D1 -- Pin(Pin.board.D1, mode=Pin.IN, pull=Pin.PULL_UP)
D2 -- Pin(Pin.board.D2, mode=Pin.IN, pull=Pin.PULL_UP)
D3 -- Pin(Pin.board.D3, mode=Pin.IN, pull=Pin.PULL_UP)
D4 -- Pin(Pin.board.D4, mode=Pin.IN, pull=Pin.PULL_UP)
D5 -- Pin(Pin.board.D5, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF5_ASSOC_IND)
D6 -- Pin(Pin.board.D6, mode=Pin.IN, pull=Pin.PULL_UP)
D7 -- Pin(Pin.board.D7, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF7_CTS)
D8 -- Pin(Pin.board.D8, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF8_SLEEP_REQ)
D9 -- Pin(Pin.board.D9, mode=Pin.ALT, pull=Pin.PULL_UP, alt=Pin.AF9_ON_SLEEP)
P0 -- Pin(Pin.board.P0, mode=Pin.OUT)
P1 -- Pin(Pin.board.P1, mode=Pin.IN, pull=Pin.PULL_UP)
P2 -- Pin(Pin.board.P2, mode=Pin.IN, pull=Pin.PULL_UP)

Change output pin values: turn LEDs on and off
You can change the output value of a pin on the XBee Cellular Modem using an "active high"
configuration. This means that turning the pin ON turns the LEDs ON, not OFF.

I/O pin examples Poll input pin values

Digi MicroPython Programming Guide 87

For example, you can change the value of a pin that is connected to some of the LEDs on an XBIB-U-
DEV board. The change in pin state is shown by the LEDs being illuminated or not. The pin in the
example is connected to three green LEDs in an "active high" configuration.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below.
3. At the MicroPython >>> prompt, press Crtl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. The print statements in the code block

below print to the terminal.

Import the Pin module
from machine import Pin
print("\nTake note of the 3 green LEDs to the right of the USB port on the")
print("XBIB-UDEV board, they normally turn on during boot-up.")
print("Creating a pin object for the pin these LEDs are connected to...\n")
Set up a Pin object to represent pin 6 (PWM0/RSSI/DIO10).
The second argument, Pin.OUT, sets the pin's mode to be an OUTPUT.
The third argument sets the initial value, which is 0 here, meaning OFF.
dio10 = Pin("P0", Pin.OUT, value=0)
print("The LEDs should now be OFF, since we set the pin to output \"0\"")
print("For verification, we will check the value of the pin:")
After running the above command, the green LEDs should now all be OFF.
Verify the value of the pin's output by calling the "value" method without
any parameters.
pinval = dio10.value()
This should return "0", which is correct given that the LEDs are OFF,
they are active high, and we set the initial value to be 0.
print("Pin value (retrieved using the \"value()\" method): %d\n" % pinval)
_ = input("Press Enter to change the pin value from 0 to 1.\n")
print("Turning the LEDs ON by setting the pin to 1 with the value()
method...")
Turn the LEDs on.
dio10.value(1)
The LEDs should turn on and stay on.
print("The LEDs should now be ON!")

Poll input pin values
You can use the value() method to check the present value on a pin set up to be in input mode. With
polling, you can use MicroPython code to monitor the value of a pin. During polling, the system
constantly checks the value of the pin. MicroPython can then perform an action when the value on the
pin changes.
The following example demonstrates a simple loop that waits for the user to press a button on the
XBIB board, which is connected to a pin on the XBee Cellular Modem. This sample uses the value()
method to return the current value on an input pin, and uses polling to monitor a pin.

1. Access the MicroPython environment.
2. Copy the code sample below. This code imports the pin module from the machine module and

creates a pin object ad0 to represent pin 20.

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

I/O pin examples Check the configuration of a pin

Digi MicroPython Programming Guide 88

from machine import Pin
ad0 = Pin("D0", Pin.IN)

3. At the MicroPython >>> prompt, press Crtl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Copy the code sample below. This code returns the current value of pin 20. This pin is pulled up

on the development board and will read 1 until the SW2 button on the development board is
pressed.

ad0.value()

6. Press Crtl+E to enter paste mode.
7. At the MicroPython >>> prompt, right-click and select the Paste option.
8. Copy the code sample below. This code waits for the SW2 button to be pressed, prints a

message, and then exits the program.

while True:
if ad0.value() == 0:

print("SW2 has been pressed!")
break

9. Press Crtl+E to enter paste mode.
10. At the MicroPython >>> prompt, right-click and select the Paste option.

11. Press Enter until "..." is no longer displayed on the left. The code that was entered is now
running. It is waiting for the value of the pin to go from 1 to 0.

12. Press the SW2 button on the XBIB board. It is below and left of the RESET button, with the USB
port facing you. The terminal should output SW2 has been pressed!, then go back to the
MicroPython >>> prompt on a new line.

Check the configuration of a pin
You can check the configuration of a pin using the mode() method when the pin is set up as an input,
output, analog, or other function.
The following example shows the basics of these modes.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below:

Import the Pin module from the machine module
from machine import Pin

print("\nChecking the mode of pin 20 (AD0/DIO0)...")
pinmode = Pin.board.D0.mode()
This should return "0", meaning it is in input mode.
print("AD0/DIO0 is in mode: %d\n" % pinmode)

print("Checking the mode of pin 15 (Associate/DIO5)...")

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

I/O pin examples Check the pull-up mode of a pin

Digi MicroPython Programming Guide 89

pinmode = Pin.board.D5.mode()
This should return "2", meaning it is in "ALT" mode by default,
meaning an alternative function, generally board or port-specific.
print("ASSOC/DIO5 is in mode: %d\n" % pinmode)

print("Creating a pin object for ASSOC/DIO5, setting it as an input...")
d5 = Pin("D5", Pin.IN)
print("Checking DIO5's mode using the \"mode\" method...")
pinmode = d5.mode()
This should return "0", meaning it is an input, which is how it was
initialized when d5 was created.
print("DIO5 is in mode: ", pinmode)
print("Note the fact that this pin started out in either ALT or OUTPUT
mode")
print("(value 2 or 1) and is now in input mode (value 0).\n")

print("The modes can be seen by printing the values of the main pin modes:")
print("Pin.IN: ", Pin.IN) # This should print "0", this is input mode.
print("Pin.OUT: ", Pin.OUT) # This should print "1", this is output mode.
print("Pin.ALT: ", Pin.ALT) # This should print "2", this is ALT mode.
ALT stands for "alternate", and is usually a port-specific function.
print("Pin.OPEN_DRAIN: ", Pin.OPEN_DRAIN) # This should print "17".
Open Drain is an output configuration referring to the circuit positioning
of the drive transistor.
print("Pin.ANALOG: %d\n" % Pin.ANALOG)
This should print "3", this is analog mode.

print("Changing the pin DIO5 to be an output, rather than an input, using
the")
print("\"mode\" method...")
d5.mode(Pin.OUT) # Set to output
print("Checking the mode of the pin after the change...")
pinmode = d5.mode() # This should return "1".
print("DIO5 is in mode: %d" % pinmode)
print("Note that value of 1 corresponds to an output, as we set it.\n")
This means the pin is an output, just as we defined it.
print("Note that pin DIO5 has held at least 2 different mode values in
this")
print("example, showing the different pin modes and how they can be
changed.")

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. You should see output showing the

different values generated by the print and mode commands.

Check the pull-up mode of a pin
You can use the pull() method to check the pull-upmode of a pin. The mode options are:

n Pin.PULL_UP: The pin has a default "high" value by connecting it to voltage using a resistor:
"pulling up".

n Pin.PULL_DOWN: The pin has a default "low" value by connecting it to ground with a resistor:
"pulling down".

I/O pin examples Check the pull-up mode of a pin

Digi MicroPython Programming Guide 90

The following example demonstrates how to check the pull direction of one of the pins on the XBee
Cellular Modem and the resultant values on the pin.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below.

Import the pin module

from machine import Pin

print("\nChecking the default pull-direction of the AD0/DIO0 pin...")
pinpull = Pin.board.D0.pull()
This call should return "1", meaning it is set to "PULL_UP".
print("AD0/DIO0 is set to: %d\n" % pinpull)

print("The two different values for pull direction can be viewed:")
print("Pin.PULL_UP: %d" % Pin.PULL_UP) # This should return "1".
print("Pin.PULL_DOWN: %d\n" % Pin.PULL_DOWN) # This should return "2".

Now, make a pin object for pin AD0/DIO0, set as an input, and pulled
down to ground (0).
print("Creating a pin object for AD0/DIO0, pulled DOWN...")
d0 = Pin("D0", Pin.IN, Pin.PULL_DOWN)
print("Checking the pull direction of this pin...")
pinpull = d0.pull()
print("Pull direction of AD0/DIO0: %d\n" % pinpull)
This should return "2", since it was just set to "PULL_DOWN".
print("Checking the value present on the pin...")
pinval = d0.value()
print("Value on AD0/DIO0: %d" % pinval)
print("This should return 0, since the pin is pulled down to
ground.\n")

print("Changing the pin mode to be PULL_UP.")
d0.pull(Pin.PULL_UP)
print("Checking the pull direction of this pin...")
pinpull = d0.pull()
print("Pull direction of AD0/DIO0: %d" % pinpull)
print("This should return 1, since it was just set to PULL_UP.\n")
print("Checking the value on the pin again...")
pinval = d0.value()
print("Value on AD0/DIO0: %d" % pinval)
print("This should now return 1 now, instead of 0. This means the pin
was")
print("successfully \"pulled up\" to Vdd, or a logic 1.\n")

Now that DIO0 is pulled up, we can examine how a pulled-up input
works.
Holding down the button "SW2"/"DIO0", check the value on the pin
again.
print("Now we can examine how a pulled-up pin acts when connected to
ground.")
_ = input("Press and hold SW2 on the XBIB board, then press Enter.")
pinval = d0.value()
print("\nValue on AD0/DIO0: %d" % pinval)

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

I/O pin examples Measure voltage on the pin (Analog to Digital Converter)

Digi MicroPython Programming Guide 91

print("The value should now be 0. This is because SW2 connected the
pin to")
print("ground, causing current to flow through the pull-up resistor,
which")
print("dropped the voltage to 0.")

3. At the MicroPython >>> prompt, type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. You should see output showing the

different values generated by the pull and value commands.

Measure voltage on the pin (Analog to Digital Converter)
The XBee Cellular Modem has four ADC inputs available to the user. These channels allow
measurement of a voltage on the pin. The voltage measurement is represented and returned as a 12-
bit value, which is a number between 0 and 4095, where 0 represents 0 V and 4095 represents 2.5 V.
The following example shows the basics of using ADC.

n The first read() call produces a high value, even though the pin is not connected to anything.
This is known as "floating" pin. The high value is caused by voltage being generated at the pin
from electromagnetic waves coming from other circuits on the board as well as the electrical
power at your location. If a multimeter that is set to measure DC voltage is connected
between the pin and ground, the read() method returns a low value, between 0 and 500.
Generally a low value is under 100.

n The second read() call is almost always 0, or very close to 0. This is because the pin is
connected directly to ground by the SW2 button. A multimeter has a high input impedance,
compared to the low (almost zero) impedance of a switch or button.

This example can be repeated with AD1, AD2, and AD3. Just replace "D0" with "D1", "D2", or "D3",
respectively. The button for AD1 is SW3 (DIO1), for AD2 is SW4 (DIO2), and for AD3 is SW5 (DIO3). All
four ADC channels work the same way and can all be used at the same time.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below:

Import ADC from machine, for simpler syntax.
from machine import ADC

Create an ADC object for pin AD0.
print("\nCreating an ADC object for pin AD0...")
adc0 = ADC("D0")
Perform a read of the analog voltage value present at the pin.
print("Reading the ADC value on the pin...")
adc_value = adc0.read()
print("ADC read #1 value: %d\n" % adc_value)
print("This will generally return a high value, around 4095,")
print("but can return any value, since the pin is not connected")
print("to anything, called \"floating\".")

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

I/O pin examples Measure voltage on the pin (Analog to Digital Converter)

Digi MicroPython Programming Guide 92

Now, holding down the SW2/DIO0 button, perform another read.
_ = input("Press and hold SW2, then press Enter on your keyboard.\n")
print("Reading ADC0 again...")
adc_value = adc0.read()
print("ADC read #2 value: %d" % adc_value)
This should return a low value, around 0.
print("Note that this value is low, it should be 0 or close to 0.")
print("This is because the pin was connected to ground, which is")
print("generally recognized as a 0 volt reference.")

If something that output a variable voltage was connected to pin AD0,
such as
a sensor or transducer, it could be measured by taking the value it
returned,
dividing it by 4095, and multiplying by the reference voltage.

For example, if the reference voltage is 2.5VDC, and a 1.0VDC signal
is
present on the pin, a "read()" call would return approximately 1638,
which is
equal to (1.0/2.5)*4095.

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. You should see output showing the

different values generated by the ADC read commands.

SMS examples

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

You can use MicroPython code to send and receive short message service (SMS) messages. You can
specify a phone number and send a message of up to 160 characters. A receivedmessage includes the
phone number from which the message was sent and the message text.
The following sections include code samples for sending and receiving an SMS message from and to
the XBee Cellular Modem.

Send an SMS message 94
Send an SMS message to a valid phone number 94
Check network connection and send an SMS message 94
Send to an invalid phone number 95
Receive an SMS message 95

Digi MicroPython Programming Guide 93

SMS examples Send an SMS message

Digi MicroPython Programming Guide 94

Send an SMS message
Before you begin sending SMS messages, verify that the XBee Cellular Modem is connected to the
cellular network. For information on checking the network connection, see Cellular network
connection examples.
You can use the network.Cellular() class to send an SMS message from the XBee Cellular Modem.
The message consists of the following:

n Phone number: The phone number of the device that should receive the message. The phone
number can be either a string, such as ('19525551212') or ('+19525551212'), or an integer
(19525551212).

n Message: A message of up to 160 characters.

If the message is sent successfully, sms_send() returns None. If the message fails, an error message
is returned.

Send an SMS message to a valid phone number
The code in this example sends a message to the specified phone number.

Note In the example below, replace the sample phone number 1123456789 with a valid mobile
telephone number.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type import network and press Enter.
3. At the MicroPython >>> prompt, type c=network.Cellular() and press Enter.
4. At the MicroPython >>> prompt, type c.sms_send('1123456789', 'MicroPython on XBee

Cellular is the best!') and press Enter.

Check network connection and send an SMS message
The code in this example waits for the module to connect to the cellular network and then send out
the SMS message.

1. Access the MicroPython environment.
2. Copy the sample code shown below:

The number "***" in the example code must be replaced with the 10-digit mobile telephone
number to which you wish to send an SMS message.

import network
import time

number = "***" # please fill in the target number
message = "MicroPython on XBee Cellular is the best!" # Message to sent out

c = network.Cellular()
while not c.isconnected():

print("waiting to be connected to the cellular network...")
time.sleep_ms(1500) # Pause 1.5 seconds between checking connection

print("The module is connected to the cellular network. Now send the
message")

SMS examples Send to an invalid phone number

Digi MicroPython Programming Guide 95

try:
c.sms_send(number, message)
print("Message sent successfully to " + number)

except Exception as e:
print("Send failure: " + str(e))

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. If the SMS message sends successfully, a

message prints.

The module is connected to the cellular network. Now send the message
Message sent successfully to "xxxxxxxxxx"

Send to an invalid phone number
The code in this example sends a message to an invalid phone number. An invalid phone number error
message is returned.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type import network and press Enter.
3. At the MicroPython >>> prompt, type c = network.Cellular() and press Enter.
4. At the MicroPython >>> prompt, type c.sms_send('1', 'test') and press Enter.

>>> c.sms_send('1', 'test')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: invalid SMS phone number

Receive an SMS message
You can use the sms_receive() method on the network.Cellular() class to receive any SMS messages
that have been sent. This class returns one of the following:

n None: There is no message.
n Message entry consisting of:

l message: The message text, which is converted to a 7-bit ASCII with extended Unicode
characters changed to spaces.

l sender: The phone number from which the message was sent.
l timestamp: The number of seconds since 1/1/2000, which is passed to time.localtime()

and then converted into a tuple of datetime elements.

MicroPython only buffers a single received SMS message. If two messages arrive between successive
calls to sms_receive(), you will receive only the most recent message.
Before you can receive an SMS message, you should verify that the XBee Cellular Modem is connected
to the cellular network. For information on checking the network connection, see Cellular network
connection examples.

SMS examples Receive an SMS message

Digi MicroPython Programming Guide 96

Sample code
The code in this example commands the device to wait for and then output the incoming SMS
message.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the code sample below.

import network
import time

c = network.Cellular() # Initialize the network parameter object.

def timestamp(t = None): # Obtain and output the current time.
return "%04u-%02u-%02u %02u:%02u:%02u" % time.localtime(t)[0:6]

Check for incoming sms message, output the message if there is any.
def check_sms():

Return the incoming message, or "None" if there isn't one.
msg = c.sms_receive()
if msg:

print('SMS received at %s from %s:\n%s' %
(timestamp(msg['timestamp']), msg['sender'], msg['message']))

return msg

def wait_for_sms():
while not check_sms(): # Wait until a message arrives.

print("Waiting for message...")
time.sleep_ms(1500)

wait_for_sms()

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Press Ctrl+D to compile and run the code. The device starts waiting for an incoming message.
6. Once this is running, an SMS message must be sent to the 10-digit phone number associated

with the XBee Cellular Modem for a message to be received. The receivedmessage prints,
including the time the message was received and the phone number from which the message
was sent.

Waiting for message...
Waiting for message...
Waiting for message...
SMS received at 2017-05-09 16:53:39 from 2125550199:
hello world

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

AT command examples

AT commands control the XBee device. The "AT" is an abbreviation for "attention," and the prefix "AT"
notifies the modem about the start of a command line. For detailed information about the AT
commands that you can use with the XBee device, see the AT commands section in the appropriate
user guide.
The atcmd() method first appeared in the xbee.XBee() class on the XBee Cellular products. For the
XBee3 Zigbee products and XBee Cellular firmware versions of x0B and later, it is accessible directly
from the xbee module, for example, xbee.atcmd(). The atcmd() method can have two parameters.

n The first parameter is the 2-character AT command. If a second parameter is not specified, the
command executes the first command and returns the result as an integer, string, or bytes
object, depending on the settings in the internal XBee command table.

n Use an optional second parameter to set an AT value to an integer, bytes object or string.

Note For the XBee Cellular Modem, the xbee().atcmd() method does not support the following AT
commands: LA and IS.
For the XBee3 Zigbee RF Module, the xbee.atcmd() function does not support the following AT
commands: IS, ED, AS, ND and DN. To perform a network discovery equivalent to an ND command, use
the xbee.discover() function.

The following sections include MircroPython AT command code samples you can use with the XBee
device.

Print the temperature of the XBee Cellular Modem 98
Print the temperature of the XBee3 Zigbee RF Module 98
Print a list of AT commands 99

Digi MicroPython Programming Guide 97

https://www.digi.com/resources/documentation/digidocs/90002219/Default.htm#reference/r_ref_material.htm
https://www.digi.com/resources/documentation/digidocs/90002219/Default.htm#reference/r_ref_material.htm

AT command examples Print the temperature of the XBee Cellular Modem

Digi MicroPython Programming Guide 98

Print the temperature of the XBee Cellular Modem
You can use atcmd() to read or set AT command parameter values.
In this example, the MicroPython code prints the temperature of the XBee Cellular Modem, reports
the current IP address of the device, and assigns a value to the DL parameter.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below:

import xbee
x = xbee.XBee()
AT command 'MY' records the current IP address assigned to the module.
print("Current IP address on module: " + x.atcmd('MY'))

set 'DL' (destination address parameter) to be "52.43.121.77".
print("Now set ATDL value to 52.43.121.77.")
x.atcmd('DL', "52.43.121.77")
print("Setup succeeds. The default target IP address is: " + x.atcmd('DL'))
'TP' records the current temperature measure on the module
print("The XBee Cellular is %.1F" % (x.atcmd('TP') * 9.0 / 5.0 + 32.0))

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. You should see a list of the items

generated by the print command:

Current IP address on module: 100.65.176.112
Now set ATDL value to 52.43.121.77.
Setup succeeds. The default target IP address is: 52.43.121.77
The XBee Cellular is 111.1

Print the temperature of the XBee3 Zigbee RF Module
You can use atcmd() to read or set AT command parameter values.
In this example, the MicroPython code prints the temperature of the XBee Cellular Modem, reports
the current address of the device, and assigns a value to the DL parameter.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the sample code shown below:

import xbee
AT commands 'SH' + 'SL' combine to form the module's 64-bit address.
addr64 = xbee.atcmd('SH') + xbee.atcmd('SL')
print("64-bit address: " + repr(addr64))

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm
https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

AT command examples Print a list of AT commands

Digi MicroPython Programming Guide 99

AT Command 'MY' is the module's 16-bit network address.
print("16-bit address: " + repr(xbee.atcmd('MY')))

Set the Network Identifier of the radio
xbee.atcmd("NI", "XBee3 module")

Configure a destination address using two different data types
xbee.atcmd("DH", 0x0013A200) # Hex
xbee.atcmd("DL", b'\x12\x25\x89\xF5') # Bytes

dest = xbee.atcmd("DH") + xbee.atcmd("DL")
formatted_dest = ':'.join('%02x' % b for b in dest)
print("Destination address set to: " + formatted_dest)

'TP' records the current temperature measure on the module
print("The XBee is %.1F degrees" % (xbee.atcmd('TP') * 9.0 / 5.0 + 32.0))

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.
5. Once pasted, the code should execute immediately. You should see a list of the items

generated by the print command:

64-bit address: 1754658623
16-bit address: 65534
Destination address set to: 00:13:a2:00:12:25:89:f5
The XBee is 78.8 degrees

Print a list of AT commands
You can read and show output for multiple AT commands and I/O parameter values.

Note You can copy and paste code from the online version of the Digi MicroPython Programming Guide.
Use caution with the PDF version, as it may not maintain essential indentations.

1. Access the MicroPython environment.
2. Copy the appropriate sample code shown below. For XBee Cellular Modem:

import xbee
x = xbee.XBee()

def dump_atcmds(): # This function outputs multiple AT parameter values.
print("Here is a summary of all AT values:")
print()
for cmd in ['PH', 'S#', 'IM', 'MN', 'MV', 'DB', 'AM', 'IP', 'TL', 'TM',

'DO', 'DL', 'DE', 'MY', 'BD', 'NB', 'SB', 'RO', 'TD', 'FT', 'AP',
'D8', 'TP', 'SM', 'SP', 'ST', 'CC', 'CT', 'GT', 'VL']:
print(cmd, '=', x.atcmd(cmd))

print("The following AT values are in HEX format:")
for hexcmd in ['VR', 'HV', 'AI', 'DI', 'CI', 'HS', 'CK']:

print(hexcmd, '=', hex(x.atcmd(hexcmd)))

def dump_iocmds(): # This function outputs multiple IO parameter values.
print("Here is a summary of all IO values:")

https://www.digi.com/resources/documentation/digidocs/90002219/default.htm

AT command examples Print a list of AT commands

Digi MicroPython Programming Guide 100

for cmd in ['D0', 'D1', 'D2', 'D3', 'D4', 'D5', 'D6', 'D7', 'D8', 'D9',
'P0', 'P1']:
print(cmd, '=', x.atcmd(cmd))

print("The following IO values are in HEX format:")
for hexcmd in ['PR', 'PD']:

print(hexcmd, '=', hex(x.atcmd(hexcmd)))

dump_atcmds()
print()
dump_iocmds()

For XBee3 Zigbee RF Module:

import xbee
at_cmds = {

"01. Network": ["CE", "ID", "ZS", "CR", "NJ",
"NW", "JV", "JN", "DO", "DC"],

"02. Operating_Network": ["AI", "OP", "OI", "CH", "NC"],
"03. Security": ["EE", "EO", "KY", "NK", "KT", "I?"],
"04. Addressing": ["SH", "SL", "MY", "MP", "DH",

"DL", "NI", "NH", "BH", "AR",
"DD", "NT", "NO", "NP"],

"05. Zigbee Addressing": ["TO", "SE", "DE", "CI"],
"06. RF Interfacing": ["PL", "PP", "SC", "SD", "DB"],
"07. UART Interface": ["BD", "NB", "SB", "AP", "AO",

"RO", "D6", "D7", "P3", "P4"],
"08. AT Command Options": ["CT", "GT", "CC"],
"09. MicroPython Options": ["PS"],
"10. Sleep Modes": ["SM", "SP", "ST", "SN", "SO",

"WH", "PO"],
"11. I/O Settings": ["D0", "D1", "D2", "D3", "D4",

"D5", "D6", "D7", "D8", "D9",
"P0", "P1", "P2", "P3", "P4",
"P5", "P6", "P7", "P8", "P9",
"PR", "PD", "LT", "RP"],

"12. I/O Sampling": ["IR", "IC", "V+"],
"13. Diagnostics": ["VR", "VH", "HV", "%V", "TP", "CK"]
}

print("Here is a summary of all AT values:\n")
for category, cmds in sorted(at_cmds.items()):

print("\n{}:".format(category))
for cmd in cmds:

try:
value = xbee.atcmd(cmd)

except KeyError:
print("Invalid command:", cmd)

else:
if (type(value) is int) and (value > 0xF):

print(cmd, '=', hex(value))
else:

if type(value) is bytes:
Format Bytes as colon-delimited
value = ':'.join('%02x' % b for b in value)

print(cmd, '=', value)

AT command examples Print a list of AT commands

Digi MicroPython Programming Guide 101

3. At the MicroPython >>> prompt type Ctrl+E to enter paste mode. The terminal displays paste
mode; Ctrl-C to cancel, Ctrl-D to finish.

4. At the MicroPython >>> prompt, right-click and select the Paste option.

5. After you press Ctrl+D to compile and run the code, a list of AT commands and I/O parameter
values is printed:

Here is a summary of all AT values:
PH = xxx
S# = xxx
IM = xxx
MN = Verizon
MV = xxx
DB = 93
AM = 0
(...)
[truncated for brevity]

MicroPython modules

You can use many MicroPython modules with the XBee device. You can obtain a list of the available
modules and of the module properties from the REPL. For more information see Discover available
modules.

XBee-specific functions 103
Standardmodules and functions 103
Discover available modules 104

Digi MicroPython Programming Guide 102

MicroPython modules XBee-specific functions

Digi MicroPython Programming Guide 103

XBee-specific functions
The following functions are specifically for use with the XBee device.

n Machine module
n Cellular network configuration module
n XBee module

Standard modules and functions
The table below describes the MicroPython modules that you can use with the XBee device. For some
functions and classes, you can only use a subset of the functions and classes with the XBee device. The
table specifies those that you can use.
For a complete description of the MicroPython libraries and the related functions, see MicroPython
libraries.

Note The MicroPython modules starting with "u" have aliases to the standard Python module names.

Function Description

MicroPython
functions

Functions used to access and control MicroPython internals.

Note The standard set of MicroPython functions work with the XBee device.

Builtin
Functions

Basic functions built in to MicroPython.

gc Functions that control the garbage collector.

sys System-specific functions.

n sys.print_exception(exc, file=sys.stdout)

Available constants:

n sys.argv
n sys.byteorder
n sys.implementation
n sys.maxsize
n sys.modules
n sys.path
n sys.platform
n sys.version
n sys.version_info

ubinascii This module implements conversions between binary data and various encodings of
it in ASCII form (in both directions).

uhashlib This module implements binary data hashing algorithms.

http://docs.micropython.org/en/latest/pyboard/library/index.html#python-standard-libraries-and-micro-libraries
http://docs.micropython.org/en/latest/pyboard/library/index.html#python-standard-libraries-and-micro-libraries
http://docs.micropython.org/en/latest/pyboard/library/micropython.html
http://docs.micropython.org/en/latest/pyboard/library/micropython.html
http://docs.micropython.org/en/latest/pyboard/library/builtins.html
http://docs.micropython.org/en/latest/pyboard/library/builtins.html
http://docs.micropython.org/en/latest/pyboard/library/gc.html
http://docs.micropython.org/en/latest/pyboard/library/sys.html
http://docs.micropython.org/en/latest/pyboard/library/ubinascii.html
http://docs.micropython.org/en/latest/pyboard/library/uhashlib.html

MicroPython modules Discover available modules

Digi MicroPython Programming Guide 104

Function Description

uio This module contains additional types of stream (file-like) objects and helper
functions.

ujson This module performs JSON encoding and decoding.

usocket (XBee Cellular Modem only) This module provides access to the BSD socket
interface.
See Sockets for samples of using sockets with the XBee Cellular Modem.

ustruct This module provides functions to pack and unpack primitive data types.

utime XBee Cellular Modem: This module provides functions for getting the current time
and date, measuring time intervals, and for delays.
XBee3 Zigbee RF Module: This module provides functions for measuring time
intervals, and for delays.

Discover available modules
You can obtain a list of the available modules and of the module properties from the REPL.

Note The MicroPython modules starting with "u" have aliases to the standard Python module names.

1. Access the MicroPython environment.
2. At the MicroPython >>> prompt, type help('modules') and press Enter. A list of available

modules displays.
3. You can display a list of a module's properties andmethods. In these steps, (modulename) in

the command should be replaced by the module you are interested in.
a. At the MicroPython >>> prompt, type import modulename, and press Enter.
b. At the MicroPython >>> prompt, type help(modulename) and press Enter. A list of

the module's properties andmethods displays.

http://docs.micropython.org/en/latest/pyboard/library/uio.html
http://docs.micropython.org/en/latest/pyboard/library/ujson.html
http://docs.micropython.org/en/latest/pyboard/library/usocket.html
http://docs.micropython.org/en/latest/pyboard/library/ustruct.html
http://docs.micropython.org/en/latest/pyboard/library/utime.html

Machine module

The machine module contains specific functions related to the XBee device.
For a detailed description of the MicroPython machine functions, see the machine function section in
the standard MicroPython documentation.

Reset-cause 106
Random numbers 106
Unique identifier 106
Class PWM (pulse width modulation) 106
Class ADC: analog to digital conversion 107
Class I2C: two-wire serial protocol 108
Class Pin 111
Class UART 111

Digi MicroPython Programming Guide 105

http://docs.micropython.org/en/latest/pyboard/library/machine.html

Machine module Reset-cause

Digi MicroPython Programming Guide 106

Reset-cause
This function returns the cause of a reset. See Reset-cause for possible return values.

machine.reset_cause()

Constants
These return values describe the cause of a reset.

machine.PWRON_RESET

machine.HARD_RESET

machine.WDT_RESET

machine.DEEPSLEEP_RESET

machine.SOFT_RESET

Random numbers
The machine.rng() method returns a 30-bit random number that is generated by the software.
The uos.urandom(n) method returns a bytes object with n random bytes generated by the hardware
random number generator.

Unique identifier
The machine.unique_id() function returns a 64-bit bytes object with a unique identifier for the
processor on the XBee Cellular Modem.
In some MicroPython ports, the ID corresponds to the network MAC address.

Class PWM (pulse width modulation)
Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

You use this function to enable PWM on XBee Cellular Modem pin P0.
The duty cycle is between 0 and 1023, inclusive of the end points. PWM cannot read or write the
frequency.
This function uses the machine.PWM class. For information about the MicroPython machine module,
see machine — functions related to the hardware.

from machine import Pin, PWM

pwm0 = PWM(Pin('P0')) # create PWM object from a pin
pwm0.duty() # get current duty cycle
pwm0.duty(200) # set duty cycle
pwm0.deinit() # turn off PWM on the pin

pwm2 = PWM('P1', duty=512) # create and configure in one go

http://docs.micropython.org/en/latest/pyboard/library/machine.html

Machine module Class ADC: analog to digital conversion

Digi MicroPython Programming Guide 107

The following REPL session makes use of the PWM class:

>>> from machine import PWM
>>> pwm0 = PWM('P0')
>>> pwm0.freq() # report the frequency (23.46kHz)
23460
>>> pwm0.freq(10000) # can't change fixed frequency on XBee
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NotImplementedError: can't set PWM frequency
>>> pwm0.duty() # report the duty cycle
0
>>> pwm0.duty(255) # set 25% duty cycle
>>> pwm0.duty(511) # set 50% duty cycle
>>> pwm0.duty(767) # set 75% duty cycle
>>> pwm0.duty(1023) # set 100% duty cycle
>>> pwm0.duty() # report the duty cycle
1023
>>> pwm0.deinit() # disable DIO10

Note PWM1 is not supported currently.

Class ADC: analog to digital conversion
Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

Use this class to read analog values on a pin.

import machine

apin = machine.ADC('D0') # create an analog pin on D0
val = adc.read() # read an analog value

Constructors
You can create an ADC object associated with the assigned pin. You can then read analog values on
that pin.

class machine.ADC('D0')

Note The ADC analog pin input range is 0 - 2.5 V.

Methods
Read the analog value
This function allows you to read the ADC value.

apin.read()

Machine module Class I2C: two-wire serial protocol

Digi MicroPython Programming Guide 108

Class I2C: two-wire serial protocol
Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

I2C is a two-wire protocol for communicating between devices. At the physical level it consists of two
wires: SCL and SDA, the clock and data lines respectively.
I2C objects are created attached to a specific bus. They can be initialized when created, or initialized
later on.
Printing the I2C object gives you information about its configuration.
The XBee Cellular Modem can function as an I2C master controlled by MicroPython. This allows you to
perform basic sensing and actuation with I2C devices such as sensors and actuators via MicroPython
without an additional microcontroller.
The MicroPython API is the same as documented in the MicroPython library reference except that the
XBee Cellular Modem does not support primitive operations or the deinit operation.
The I2C implementation is provided through hardware, so when you use machine.I2Cto initialize I2C,
use the id parameter to select the interface. The only valid value is 1, which uses D1 for SCL and D11
for SDA. Using the scl and sda parameters to select pins is not valid on the XBee Cellular Modem.
An example of using I2C follows:

from machine import I2C

i2c = I2C(1, freq=400000) # create I2C peripheral at frequency of 400kHz

i2c.scan() # scan for slaves, returning a list of 7-bit
addresses

i2c.writeto(42, b'123') # write 3 bytes to slave with 7-bit address 42
i2c.readfrom(42, 4) # read 4 bytes from slave with 7-bit address 42

i2c.readfrom_mem(42, 8, 3) # read 3 bytes from memory of slave 42,
starting at memory-address 8 in the slave

i2c.writeto_mem(42, 2, b'\x10') # write 1 byte to memory of slave 42
starting at address 2 in the slave

Constructors
class machine.I2C(id, *, freq=400000)
Construct and return a new I2C object using the following parameters:

n id identifies a particular I2C peripheral. This version of MicroPython supports a single
peripheral with id 1 using DIO1 for SCL and DIO11 for SDA.

n freq should be an integer that sets the maximum frequency for SCL.

General methods
I2C.scan()
Scan all I2C addresses between 0x08 and 0x77 inclusive and return a list of those that respond. A
device responds if it pulls the SDA line low after its address (including a write bit) is sent on the bus.

http://docs.micropython.org/en/latest/pyboard/library/machine.I2C.html

Machine module Class I2C: two-wire serial protocol

Digi MicroPython Programming Guide 109

Standard bus operations methods
The following methods implement the standard I2C master read and write operations that target a
given slave device.
I2C.readfrom(addr, nbytes, stop=True)
Read nbytes from the slave specified by addr. If stop is true then a STOP condition is generated at
the end of the transfer. Returns a bytes object with the data read.
I2C.readfrom_into(addr, buf, stop=True)
Read into buf from the slave specified by addr. The number of bytes read will be the length of buf. If
stop is true then a STOP condition is generated at the end of the transfer.
The method returns None.
I2C.writeto(addr, buf, stop=True)
Write the bytes from buf to the slave specified by addr. If a NACK is received following the write of a
byte from buf then the remaining bytes are not sent. If stop is true then a STOP condition is
generated at the end of the transfer, even if a NACK is received. The function returns the number of
ACKs that were received.

Memory operations methods
Some I2C devices act as a memory device (or set of registers) that can be read from and written to. In
this case there are two addresses associated with an I2C transaction: the slave address and the
memory address. The following methods are convenience functions to communicate with such
devices.
I2C.readfrom_mem(addr, memaddr, nbytes, *, addrsize=8)
Read nbytes from the slave specified by addr starting from the memory address specified by
memaddr. The argument addrsize specifies the address size in bits. Returns a bytes object with the
data read.
I2C.readfrom_mem_into(addr, memaddr, buf, *, addrsize=8)
Read into buf from the slave specified by addr starting from the memory address specified by
memaddr. The number of bytes read is the length of buf. The argument addrsize specifies the
address size in bits.
The method returns None.
I2C.writeto_mem(addr, memaddr, buf, *, addrsize=8)
Write buf to the slave specified by addr starting from the memory address specified by memaddr.
The argument addrsize specifies the address size in bits.
The method returns None.

Sample program
The following sample works with a DS1621 I2C Temperature Sensor. Make the following connections
before testing the code:

XBee pin Description DS1621 pin

19 (DIO1) SCL 2

7 (DIO11) SDA 1

Machine module Class I2C: two-wire serial protocol

Digi MicroPython Programming Guide 110

XBee pin Description DS1621 pin

1 VCC 8

10 GND 4

In addition, connect the address pins of the DC1621 (5, 6 and 7) to ground, and a pullup resistor from
the SDA line to VCC.

Simple DS1621 I2C Example
Wiring Diagram:
XBee -> DS1621
19 SCL 2
7 SDA 1 (and connect via pullup resistor to Vcc)
1 Vcc 8
10 GND 4 (and address pins 5, 6 and 7)

import machine
import utime
import ustruct

i2c = machine.I2C(1)
slave_addr = 0x48 # 0b100_1000. Assumes A0-2 are low.

The high/low temperature registers are 9-bit two's complement signed ints.
Data is written MSB first, so as an example the value 1 (0b1) is represented
as 0b00000000 10000000, or 0x0080.
REGISTER_FORMAT = '>h'
REGISTER_SHIFT = 7

Read a 9-bit temperature from the DS1621. Values for <protocol>:
b'0xAA' for Read Temperature
b'0xA1' for TH Register
b'0xA2' for TL Register
Returns temperature in units of 0.5C. Fahrenheit = temp * 9 / 10 + 32
def read_temperature(protocol=b'\xAA'):

i2c.writeto(slave_addr, protocol, False)
data = i2c.readfrom(slave_addr, 2)
value = ustruct.unpack(REGISTER_FORMAT, data)[0] >> REGISTER_SHIFT
return value

def start_convert():
i2c.writeto(slave_addr, '\xEE', True)

def stop_convert():
i2c.writeto(slave_addr, '\x22', True)

def read_access_config():
i2c.writeto(slave_addr, '\xAC', False)
return i2c.readfrom(slave_addr, 1)

def write_access_config(value):
written = i2c.writeto(slave_addr, b'\xA1' + ustruct.pack('b', value))
assert written == 2, "Access Config write returned %d ?" % written

def display_continuous():

Machine module Class Pin

Digi MicroPython Programming Guide 111

start_convert()
try:

while True:
print('%.1fF' % (read_temperature() * 9 / 10 + 32))
utime.sleep(2)

except:
stop_convert()
raise

Perform a scan and make sure we find the slave device we want to talk to.
devices = i2c.scan()
assert (slave_addr in devices,

"Did not see slave device address %d in scan result: %s" %
(slave_addr, devices))

display_continuous()

Class Pin
Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

You can use the Pin class with the XBee Cellular Modem. For information, see Class Pin: Control I/O
pins.

Class UART
Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

MicroPython on the XBee Cellular Modem provides access to a 3-wire or 5-wire TTL-level serial port
(referred to as machine.UART(1)) on the following pins. The table also indicates the proper
connections when testing with an FTDI TTL-232R cable. Note that the FTDI cable's pin 3 (VCC) remains
unconnected.

XBee

Direction

FTDI TTL-232R

Pin Name Description Pin Name

10 GND Ground N/A 1 GND

11 DIO4 Transmit (TX) XBee → 5 RXD

4 DIO12 Receive (RX) XBee ← 4 TXD

18 DIO2 Ready to Receive (RTS) XBee → 2 CTS#

17 DIO3 Clear to Send (CTS) XBee ← 6 RTS#

Using the RTS and CTS pins for hardware flow control is optional. The XBee Cellular Modem can use
RTS to signal the remote end to stop sending when its receive buffer is close to full, and it will
conversely monitor the CTS signal and only send when the remote end asserts the signal. Both RTS

http://docs.micropython.org/en/latest/pyboard/library/machine.Pin.html
http://docs.micropython.org/en/latest/pyboard/library/machine.Pin.html
http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm

Machine module Class UART

Digi MicroPython Programming Guide 112

and CTS are active low signals where 0 (GND) represents "asserted" (or "safe to send") and 1 (VCC)
represents "deasserted" (or "wait to send").

Test the UART interface
Once you have the hardware set up:

1. Open a terminal window to the MicroPython REPL on your XBee Cellular Modem.
2. Open a second terminal window to the TTL-232R cable you connected to DIO4/DIO12.
3. Leave DIO2/DIO3 disconnected and configure the second terminal window without any flow

control.
4. From the REPL prompt, press Ctrl-E to enter paste mode.
5. Paste the following test code (which uses the default baud rate of 115,200).

from machine import UART
import time

u = UART(1)
u.write('Testing from XBee\n')

while True:
uart_data = u.read()
if uart_data:

print(str(uart_data, 'utf8'), end='')
time.sleep_ms(5)

6. Press Ctrl-D on a blank line to execute it.
7. You should see the message Testing from XBee in the other terminal window, and anything

you type there should appear in your MicroPython terminal.
8. From the MicroPython terminal, use Ctrl-C to send a KeyboardInterrupt and exit the while

loop.

Use the UART class
UART implements the standard UART/USART duplex serial communications protocol. At the physical
level it consists of at least two lines: RX and TX, with support for optional hardware flow control using
RTS/CTS handshaking. The unit of communication is a character (not to be confused with a string
character) which can be 5 to 8 bits wide.
Create UART objects using the machine.UART() class:

from machine import UART
uart = UART(1, 9600) # create with given baudrate
uart.init(9600, bits=8, parity=None, stop=1) # reconfigure with given
parameters

A UART object acts like a stream object and uses the standard streammethods for reading and
writing.

uart.read(10) # read 10 characters, returns a bytes object
uart.read() # read all available characters
uart.readline() # read a line

Machine module Class UART

Digi MicroPython Programming Guide 113

uart.readinto(buf) # read and store into the given buffer
uart.write('abc') # write the 3 characters

To check if there is anything to be read, use:

uart.any() # returns the number of characters waiting

Constructors
class machine.UART(id, baudrate=115200, bits=8, parity=None, stop=1, *, flow=0, timeout=0,
timeout_char=0)

n id: XBee Cellular supports a single UART, using the id 1.
n baudrate: Clock rate for serial data.
n bits: Bits per character, a value from 5 to 8.
n parity: An additional parity bit added to each byte, either None, 0 (even) or 1 (odd).
n stop: Number of stop bits after the optional parity bit, either 1 or 2.
n flow: Hardware flow control; either 0 for none, UART.RTS for RTS-only, UART.CTS for CTS-only

or UART.RTS|UART.CTS for both.
n timeout: Number of milliseconds to wait for reading the first character.
n timeout_char: Number of milliseconds to wait between characters when reading.

You can pass parameters before the flow keyword without their names, for example: UART(1,
115200, 8, None, 1).

Note Unlike other MicroPython platforms, the XBee Cellular Modem uses a circular buffer to store
serial data, and the timeout and timeout_char settings do not apply to writes.

Methods
UART.init(baudrate=0, bits=0, parity=-1, stop=0, *, flow=-1, timeout=-1, timeout_char=-1)
See Constructors for descriptions of each keyword. The default values (used if a keyword is not
specified) leave the current setting unchanged. Calling UART.init() resets the port using the current
settings.
UART.deinit()
Turn off the UART bus. After calling deinit(), attempts to write to the UART result in an OSError
(EPERM) exception but reads continue to pull buffered bytes.
UART.any()
Returns an integer value of the number of bytes in the read buffer, or 0 if no bytes are available.
UART.read([nbytes])
Read characters. If nbytes is specified and a positive value, then read at most that many bytes,
otherwise read as much data as possible.
Return value: a bytes object containing the bytes read. Returns None on timeout.
UART.readinto(buf[, nbytes])
Read bytes into the buf. If nbytes is specified then read at most that many bytes. Otherwise, read at
most len(buf) bytes.
Return value: number of bytes read and stored into buf or None on timeout.
UART.readline()

Machine module Class UART

Digi MicroPython Programming Guide 114

Read a line, ending in a newline character.
Return value: the line read or None on timeout.
UART.write(buf)
Write the buffer of bytes to the bus.
Return value: number of bytes written.

Constants
Used to specify the flow control type.

UART.RTS

UART.CTS

Cellular network configuration module

Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

The network configuration module provides network drivers for specific hardware, which you can use
to configure the hardware network interfaces.

Configure a specific network interface 116
class Cellular 116

Digi MicroPython Programming Guide 115

Cellular network configuration module Configure a specific network interface

Digi MicroPython Programming Guide 116

Configure a specific network interface
Network services provided by the configured interfaces are available for use from the socket module.
For more information about the socket module, see the MicroPython documentation: socket module.

Note The Digi version of MicroPython differs from MicroPython regarding the SSL API. The XBee
Cellular Modem supports secure sockets via the usocket.IPPROTO_SEC option to the usocket.socket
() constructor, but does not include the ussl module for wrapping sockets and providing certificates
and keys.

This example shows how to configure a specific network interface:

from machine import UART
import sys, time

def uart_init():
u = UART(1)
u.write('Testing from XBee\n')
return u

def uart_relay(u):
while True:

uart_data = u.read(-1)
if uart_data:

sys.stdout.buffer.write(uart_data)
stdin_data = sys.stdin.buffer.read(-1)
if stdin_data:

u.write(stdin_data)

time.sleep_ms(5)

u = uart_init()
uart_relay(u)

For information about the cellular class, which provides a driver for the Cellular modem in the XBee,
see class Cellular.

class Cellular
Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

This class provides a driver for the cellular modem in the XBee device.
For example:

import network
import time
cellular = network.Cellular()
while not cellular.isconnected():

time.sleep_ms(50)
print(cellular.ifconfig())

now use socket as usual
...

http://docs.micropython.org/en/latest/pyboard/library/usocket.html

Cellular network configuration module class Cellular

Digi MicroPython Programming Guide 117

Constructors
Use the constructor to create an XBee Cellular object.

class network.Cellular()

Cellular power and airplane mode method
This method determines whether the XBee Cellular Modem is powered on or in airplane mode.

cellular.active([mode])

Without parameters:

n Returns True if the XBee Cellular Modem is powered on.
n Returns False if the XBee Cellular Modem is in airplane mode.

With parameters:

n False: XBee Cellular Modem enters airplane mode.
n True: XBee Cellular Modem leaves airplane mode.

Note No changes to the XBee Cellular Modem are made if the parameter matches the current mode.

Verify cellular network connection method
This method determines whether the XBee Cellular Modem is connected to a network.

cellular.isconnected()

n True: The XBee Cellular Modem is connected to a cellular network and has a valid IP address.
n False: Otherwise.

Cellular connection configuration method
The ifconfig() method reports on the IP addressing. See Check the network connection for details.
The config() method reports on and allows configuration of the network interface. See Check
network connection and print connection parameters for an example.
For additional information about network configuration, see the MicroPython network configuration
documentation.

Send an SMS message method
This method sends a message to a phone using SMS.

cellular.sms_send(phone, message)

where:

n phone: The phone number of the device to which the message should be sent. This variable
can be a string or an integer.

n message: The contents of the message. The message should be a string or a bytes object of 7-
bit ASCII characters.

http://docs.micropython.org/en/latest/pyboard/library/network.html
http://docs.micropython.org/en/latest/pyboard/library/network.html

Cellular network configuration module class Cellular

Digi MicroPython Programming Guide 118

Possible return values:

n None: The cellular network acknowledges receipt of the message. The method throws a
"ValueError" for invalid parameters.

Throws an "OSError" exception:

n ENOTCONN: The cellular mode has not connected.
n ETIMEDOUT: If the network doesn't acknowledge the message in a reasonable amount of time.
n EIO: If there was some other error in sending the messages.

Receive an SMS message method
This method returns information about a sent SMS message. Possible return values include None or a
dictionary key.

n None: A message isn't waiting.
n timestamp: The time the SMS message was received. The timestamp displays as a number of

seconds since 1/1/2000. For more information, see the related MicroPython documentation
about the utime module: http://docs.micropython.org/en/latest/pyboard/library/utime.html

n sender: The phone number of the sender.
n message: The contents of the SMS that was received.

http://docs.micropython.org/en/latest/pyboard/library/utime.html

XBee module

The functions in this section are specific to the XBee device hardware.

class XBee on XBee Cellular Modem 120
XBee MicroPython module on the XBee3 Zigbee RF Module 120

Digi MicroPython Programming Guide 119

XBee module class XBee on XBee Cellular Modem

Digi MicroPython Programming Guide 120

class XBee on XBee Cellular Modem
Note This section only applies to the XBee Cellular Modem. See Which features apply to my device? for
a list of the supported features.

Use this function to output information about the XBee device that is hosting MicroPython.

import xbee
x = xbee.XBee() #Create an XBee object
print(x.atcmd('MY'))

Constructors
Use this class to create an XBee Cellular object for the XBee Cellular Modem that is hosting
MicroPython.

class xbee.XBee()

Methods
Use this method to send an AT command to the XBee Cellular Modem.

x.atcmd(cmd[, value])

<cmd>
The <cmd> parameter is a two-character string that represents the command.
For detailed information about the AT commands that you can use with the XBee device, see the AT
commands section in the appropriate user guide.
<value>
The <value> parameter is optional.

n If the <value> parameter is NOT set: The function executes the AT command and, depending on
the command, returns the result as either a string, bytes object, an integer, or None. Some
commands simply return a value; other AT commands, such as special commands and
execution commands, change the behavior of the XBee device. For example, FR resets the
device.

n If the <value> parameter is set: You can specify a value in a string, btyearray, or integer format.
The function passes the value to set the AT command.

For examples of how to use the AT commands with the XBee device, see AT command examples.

XBee MicroPython module on the XBee3 Zigbee RF Module
Note This section only applies to the XBee3 Zigbee RF Module. See Which features apply to my device?
for a list of the supported features.

Functions
The xbee MicroPython module supports the following functions:

https://www.digi.com/resources/documentation/digidocs/90002219/Default.htm#reference/r_ref_material.htm

XBee module XBee MicroPython module on the XBee3 Zigbee RF Module

Digi MicroPython Programming Guide 121

atcmd()
Use this function to set or query an AT command on the XBee3 Zigbee RF Module.

xbee.atcmd(cmd[, value])

<cmd>
The <cmd> parameter is a two-character string that represents the command.
For detailed information about the AT commands that you can use with the XBee device, see the AT
commands section in the appropriate user guide.

<value>
The <value> parameter is optional.

n If the <value> parameter is not set: The function executes the AT command and, depending on
the command, returns the result as either a string, bytes object, an integer, or None. Some
commands simply return a value; other AT commands, such as special commands and
execution commands, change the behavior of the XBee device. For example, FR resets the
device.

n If the <value> parameter is set: You can specify a value in a string, btyearray, or integer
format. The function passes the value to set the AT command.

For examples of how to use the AT commands with the XBee device, see AT command examples.

discover()
Use this function to perform a network discovery, which is equivalent to issuing the ND command.

xbee.discover()

This function accepts no parameters, and returns a dictionary for each discovered node that contains
the following entries:

n sender_nwk: 16-bit network address
n sender_eui64: 8-byte bytes object with EUI-64 address
n parent_nwk: set to 0xFFFE on the coordinator and routers, otherwise the network address of

the end device's parent
n node_id: the device's NI value (a string of up to 20 characters, also referred to as Node

Identification)
n node_type: Value of 0, 1 or 2 for coordinator, router or end device.
n device_type: the device's 32-bit DD value (also referred to as Digi Device Type)
n rssi: RSSI of the node discovery request packet received by the sending node

Example output:

{
'rssi': -20,
'node_id': ' ',
'device_type': 1179648,
'parent_nwk': 65534,

https://www.digi.com/resources/documentation/digidocs/90002219/Default.htm#reference/r_ref_material.htm

XBee module XBee MicroPython module on the XBee3 Zigbee RF Module

Digi MicroPython Programming Guide 122

'sender_nwk': 41334,
'sender_eui64': b'\x00\x13\xa2\x00\x92w%`',
'node_type': 1

}

receive()
The XBee3 Zigbee RF Module has a MicroPython receive queue that stores up to four incoming
packets.
If the device is operating in MicroPython REPL (AP is set to 4) and the receive queue is full, it silently
rejects any additional incoming packets; the sending node will receive a transmission status of 0x24
(Address not found) in this case.

Note We recommend calling the receive() function in a loop so no data is lost. On devices where there
is a high volume of network traffic, there could be data lost if the messages are not pulled from the
queue fast enough.

Use this function to return a single entry from the receive queue. The format and fields are equivalent
to receiving a 0x91 Explicit Rx API frame.

xbee.receive()

This function accepts no parameters, and returns a dictionary containing the following entries:

n sender_nwk: the 16-bit network address of the sending node
n sender_eui64: the 64-bit address (as a bytearray) of the sending node
n source_ep: the source endpoint as an integer
n dest_ep: the destination endpoint as an integer
n cluster: the cluster id as an integer
n profile: the profile id as an integer
n broadcast: either True or False depending on whether the frame was broadcast or unicast
n payload: a bytes object of the payload (intentional selection of bytes object over string since

the payload can contain binary data)

Example output:

{
'cluster': 17,
'dest_ep': 232,
'broadcast': False,
'source_ep': 232,
'payload': b'Sample payload',
'profile': 49413,
'sender_nwk': 63941,
'sender_eui64': b'\x00\x13\xa2\x00\x92w%`'

}

transmit()
Use this function to transmit a packet to a specified destination address. This function either
succeeds and returns None, or raises an exception. Here is a partial list of the exceptions to expect:

XBee module XBee MicroPython module on the XBee3 Zigbee RF Module

Digi MicroPython Programming Guide 123

n TypeError: invalid type for either <dest> or <payload>
n ValueError: Payload is too long. Maximum length depends on whether you are making a

unicast or broadcast transmission with or without encryption. Note that application-level
encryption is not available in current builds.

n OSError(ENOTCONN): Device is not joined to a network (AI returns a non-zero value)
n OSError(EAGAIN): temporary issue preventing sending, for example, insufficient buffers,

packet already queued for target
n OSError(EIO): general error message for unable to send

xbee.transmit(dest, payload)

<dest>
The <dest> parameter is the destination address of the message, and accepts any of the following:

n an integer for 16-bit addressing
n an 8-byte bytes object for 64-bit addressing
n the constant xbee.ADDR_BROADCAST to indicate a broadcast destination
n the constant xbee.ADDR_COORDINATOR to indicate the coordinator

There are multiple ways to create the 8-byte bytes object for 64-bit addressing:

n as a bytestring: b'\x00\x13\xa2\x00\x41\x74\x07\xa6'
n using the bytes() constructor with a list of decimal values: bytes([0, 19, 162, 0, 65, 116, 7,

166])
n using the bytes() constructor with a tuple of hex values: bytes((0x00, 0x13, 0xa2, 0x00,

0x41, 0x74, 0x07, 0xa6))

Note You can also pass a list of hex values or a tuple of decimal values to bytes().

<payload>
The <payload> parameter should be a string (for example, 'Hello World!') or bytes object (useful for
sending binary data).

	Digi MicroPython Programming Guide
	Reference material

	Which features apply to my device?
	Use MicroPython
	Access the MicroPython environment
	Enter MicroPython code
	Direct entry

	Exit MicroPython
	Display tools
	Coding tips

	MicroPython syntax
	Colons
	After conditional statements and loop statements

	Indentations
	FOR loop with one statement indented
	FOR loop with two statements indented

	Functions
	Function with arguments

	Errors and exceptions
	Syntax error
	Example

	Name error
	Referencing a name that was not created
	Referencing a name from one function that was created in a different function

	OSError
	Socket errors
	ENOTCONN: Time out error
	ENFILE: No sockets are available
	ENXIO: No such device or address

	Keyboard shortcuts
	Keyboard shortcuts
	Select a previously typed statement

	Differences between MicroPython and other programming languages
	Memory management
	Variable types
	Syntax
	Curly braces and indentation
	Semicolons
	Increment operator
	Logical operators

	Power management with MicroPython
	Sleeping with AT commands: XBee Cellular Modem
	Initiate sleep from MicroPython
	Sleeping with AT commands: XBee3 Zigbee RF Module

	Access the primary UART
	How to use the primary UART
	sys.stdin limitations

	Example

	REPL (Read-Evaluate-Print Loop) examples
	Ctrl+A: Enter raw REPL mode
	Ctrl+B: Print the MicroPython banner
	Print the banner
	Print the banner and verify that the memory was not wiped

	Ctrl+C: Regain control of the terminal
	Ctrl+D: Reboot the MicroPython REPL
	Ctrl+E: Enter paste mode
	Paste one line of code
	Paste a code segment

	Ctrl+F: Upload code to flash
	Upload code to flash memory
	Erase the code stored in flash memory

	Flash memory and automatic code execution
	Run stored code at start-up to flash LEDs
	Disable code from running at start up
	Ctrl+R: Run code in flash
	Enable code to run at start-up

	Perform a soft-reset or reboot

	Access file system in MicroPython
	Modify file system contents
	uos.chdir(dir)
	uos.getcwd()
	uos.ilistdir([dir])
	uos.listdir([dir])
	uos.mkdir(dir)
	uos.remove(file)
	uos.rmdir(dir)
	uos.rename(old_path, new_path)
	uos.replace(old_path, new_path)
	uos.sync()
	uos.compile(source_file, mpy_file=None)
	uos.format()
	uos.hash([secure_file])

	Access data in files
	File object methods
	read(size=-1)
	readinto(b)
	readline(size=-1)
	readlines()
	write(b)
	seek(offset, whence=0)
	tell()
	flush()
	close()

	Import modules from file system
	Reload a module
	Compiled MicroPython files

	MicroPython libraries on GitHub
	The ussl module
	ussl on the XBee Cellular Modem
	Syntax
	Usage

	Sample code

	Use AWS IoT from MicroPython
	Add an XBee Cellular Modem as an AWS IoT device
	Create a policy for access control
	Create a Thing
	Install the certificates
	Test the connection
	Publish to a topic
	Confirm published data
	Subscribe to updates from AWS

	Time module example: get the current time
	Retrieve the local time
	Retrieve time with a loop
	Delay and timing quick reference

	Cellular network connection examples
	Check the network connection
	Check network connection with a loop
	Check network connection and print connection parameters

	Socket examples
	Sockets
	Basic socket operations: sending and receiving data, and closing the network ...
	Basic data exchange code sample
	Response header lines

	Specialized receiving: send received data to a specific memory location
	DNS lookup
	DNS lookup code output

	Set the timeout value and blocking/non-blocking mode
	Send an HTTP request and dump the response
	Socket errors
	ENOTCONN: Time out error
	ENFILE: No sockets are available
	ENXIO: No such device or address

	Unsupported methods

	I/O pin examples
	Change I/O pins
	Print a list of pins
	Change output pin values: turn LEDs on and off
	Poll input pin values
	Check the configuration of a pin
	Check the pull-up mode of a pin
	Measure voltage on the pin (Analog to Digital Converter)

	SMS examples
	Send an SMS message
	Send an SMS message to a valid phone number
	Check network connection and send an SMS message
	Send to an invalid phone number
	Receive an SMS message
	Sample code

	AT command examples
	Print the temperature of the XBee Cellular Modem
	Print the temperature of the XBee3 Zigbee RF Module
	Print a list of AT commands

	MicroPython modules
	XBee-specific functions
	Standard modules and functions
	Discover available modules

	Machine module
	Reset-cause
	Constants

	Random numbers
	Unique identifier
	Class PWM (pulse width modulation)
	Class ADC: analog to digital conversion
	Constructors
	Methods

	Class I2C: two-wire serial protocol
	Constructors
	General methods
	Standard bus operations methods
	Memory operations methods
	Sample program

	Class Pin
	Class UART
	Test the UART interface
	Use the UART class
	Constructors
	Methods
	Constants

	Cellular network configuration module
	Configure a specific network interface
	class Cellular
	Constructors
	Cellular power and airplane mode method
	Verify cellular network connection method
	Cellular connection configuration method
	Send an SMS message method
	Receive an SMS message method

	XBee module
	class XBee on XBee Cellular Modem
	Constructors
	Methods

	XBee MicroPython module on the XBee3 Zigbee RF Module
	Functions
	atcmd()
	discover()
	receive()
	transmit()

